图书简介
Maximum Likelihood Estimation with Stata, Fifth Edition is the essential reference and guide for researchers in all disciplines who wish to write maximum likelihood (ML) estimators in Stata. Beyond providing comprehensive coverage of Stata’s commands for writing ML estimators, the book presents an overview of the underpinnings of maximum likelihood and how to think about ML estimation.The fifth edition includes a new second chapter that demonstrates the easy-to-use mlexp command. This command allows you to directly specify a likelihood function and perform estimation without any programming.The core of the book focuses on Stata’s ml command. It shows you how to take full advantage of ml’s noteworthy features:Linear constraintsFour optimization algorithms (Newton–Raphson, DFP, BFGS, and BHHH)Observed information matrix (OIM) variance estimatorOuter product of gradients (OPG) variance estimatorHuber/White/sandwich robust variance estimatorCluster–robust variance estimatorComplete and automatic support for survey data analysisDirect support of evaluator functions written in MataWhen appropriate options are used, many of these features are provided automatically by ml and require no special programming or intervention by the researcher writing the estimator.In later chapters, you will learn how to take advantage of Mata, Stata’s matrix programming language. For ease of programming and potential speed improvements, you can write your likelihood-evaluator program in Mata and continue to use ml to control the maximization process. A new chapter in the fifth edition shows how you can use the moptimize() suite of Mata functions if you want to implement your maximum likelihood estimator entirely within Mata.In the final chapter, the authors illustrate the major steps required to get from log-likelihood function to fully operational
Theory and practice
The likelihood-maximization problem
Likelihood theory
The maximization problem
Estimation with mlexp
Syntax
Normal linear regression
Initial values
Restricted parameters
Robust standard errors
The probit model
Specifying derivatives
Additional estimation features
Wrapping up
Introduction to ml
The probit mode
Normal linear regression
Robust standard errors
Weighted estimation
Other features of method-gf0 evaluators
Limitations
Overview of ml
The terminology of ml
Equations in ml
Likelihood-evaluator methods
Tools for the ml programmer
Common ml options
Maximizing your own likelihood functions
Appendix: More about scalar parameters
Method lf
The linear-form restrictions
Examples
The importance of generating temporary variables as doubles
Problems you can safely ignore
Nonlinear specifications
The advantages of lf in terms of execution speed
Methods lf0, lf1, and lf2
Comparing these methods
Outline of evaluators of methods lf0, lf1, and lf2
Summary of methods lf0, lf1, and lf2
Examples
Methods d0, d1, and d2
Comparing these methods
Outline of method d0, d1, and d2 evaluators
Summary of methods d0, d1, and d2
Panel-data likelihoods
Other models that do not meet the linear-form restrictions
Debugging likelihood evaluators
ml check
Using the debug methods
ml trace
Setting initial values
ml search
ml plot
ml init
Interactive maximization
The iteration log
Pressing the Break key
Maximizing difficult likelihood functions
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐