图书简介
This comprehensive volume investigates the untapped potential of machine learning in educational settings. It examines the profound impact machine learning can have on reshaping educational research. Each chapter delves into specific applications and advancements, sheds light on theory-building, and multidisciplinary research, and identifies areas for further development. It encompasses various topics, such as machine-based learning in psychological assessment. It also highlights the power of machine learning in analyzing large-scale international assessment data and utilizing natural language processing for science education. With contributions from leading scholars in the field, this book provides a comprehensive, evidence-based framework for leveraging machine-learning approaches to enhance educational outcomes. The book offers valuable insights and recommendations that could help shape the future of educational sciences.
Using machine learning in educational research.- Machine learning approaches to predict non-completion in AP statistics courses.- Predicting student attrition in university courses.- Machine learning based identification strategy of circumstances in the analysis of inequality of opportunity.- Machine learning applications for early and on-going warning systems in education.- Using neural networks for analyzing large-scale international assessment data.- Utilizing natural language processing and large language models in science education.- Machine based learning in psychological assessment.- Applying topic modeling to understand assessment practices of U.S. College instructors in response to the COVID-19 pandemic.- Penalized regression in educational large-scale assessments.- Applying machine learning to augment the design and assessment of immersive learning experience.- Automatic creation of concept maps to generate ‘Learning Coefficients’ in adaptive assessments.- Camelot: A council of machine learning strategies to enhance teaching.- Research on blended learning achievement improvement based on integrated machine learning methods.- Exploring non-cognitive factors affecting students’ academic performance based on PISA data: from econometrics to machine learning.- ChatGPTing the path to K12 educational reform: Examining Generative AI in the middle east from an industry perspective.- Exploring the integration of machine learning in mathematics classrooms: A literature review and recommendations for implementation.- Identification of students at risk of low performance or failure by combining enhanced machine learning, and knowledge graph techniques.
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐