图书简介
This new book by Franck Laloe, co-author of the seminal Cohen-Tannoudji/Laloe/Diu quantum mechanics textbooks, unravels the mysteries of quantum mechanics by showing that the underlying equations naturally emerge from very general symmetry considerations without recourse to seemingly artificial and ambiguous quantization rules. Graduate students are familiarized with computational techniques based on rotation invariance, irreducible tensor operators, the Wigner-Eckart theorem, Lie groups etc. that are indispensable to master nuclear physics, quantum optics and advanced solid-state physics. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in ten chapters which are elaborated in accompanying complements that provide more detailed discussions and examples.
I Symmetry Transformations A Fundamental Symmetries B Symmetries in Classical Mechanics C Symmetries in Quantum Mechanics A_I Euler’s and Lagrange’s Views in Classical Mechanics 1 Euler’s Point of View 2 Lagrange’s Point of View II Notions on Group Theory A General Properties of Groups B Linear Representations of a Group A_II Residual Classes of a Subgroup; Quotient Group 1 Residual Classes on the Left 2 Quotient Group III Introduction to Continuous Groups and Lie Groups A General Properties B Examples C Galileo and Poincare Groups A_III Adjoint Representation, Killing Form, Casimir Operator 1 Representation Adjoint to the Lie Algebra 2 Killing Form; Scalar Product and Change of Basis in L 3 Totally Antisymmetric Structure Constants 4 Casimir Operator IV Representations Induced in the State Space A Conditions Imposed on Transformations in the State Space B Wigner’s Theorem C Transformations of Observables D Linear Representations in the State Space E Phase Factors and Projective Representations A_IV Finite-Dimensional Unitary Projective Representations of Related Lie Groups 1 Case Where G is Simply Connected 2 Case Where G is P-Connected B_IV Uhlhorn-Wigner Theorem 1 Real Space 2 Complex Space V Representations of the Galileo and Poincare Groups: Mass, Spin and Energy A Galileo Group B Poincare Group A_V Some Properties of the Operators S and W_2 1 Operator S 2 Eigenvalues of the Operator W_2 B_V Geometric Displacement Group 1 Reminders: Classical Properties of Displacements 2 Associated Operators in the State Space C_V Clean Lorentz Group 1 Link with the Group SL(2,C) 2 Small Group Associated with a Four-Vector 3 Operator W_2 D_V Space Reflections (Parity) 1 Action in Real Space 2 Associated Operator in the State Space 3 Retention of Parity VI Construction of State Spaces and Wave Equations A Galileo Group, Schrodinger Equation B Poincare Group, Klein-Gordon and Dirac Equations A_VI Lagrangians of Wave Equations 1 Lagrangian of a Field 2 Schrodinger’s Equation 3 Klein-Gordon Equation 4 Dirac’s Equation VII Irreducible Representations of the Group of Rotations, Spinors A Irreducible Unitary Representations of the Group of Rotations B Spin 1/2 Particles; Spinors C Composition of the Kinetic Moments A_VII Homorphism Between SU(2) and Rotation Matrices 1 Transformation of a Vector P Induced by an SU(2) Matrix 2 The Transformation is a Rotation 3 Homomorphism 4 Link to the Reasoning of Chapter VII 5 Link with Bivalent Representations VIII Transformation of Observables by Rotation A Vector Operators B Tensor Operators C Wigner-Eckart Theorem D Decomposition of the Density Matrix on Tensor Operators A_VIII Basic Reminders on Classical Tensors 1 Vectors 2 Tensors 3 Properties 4 Tensoriality Criterion 5 Symmetric and Antisymmetric Tensors 6 Special Tensors 7 Irreducible Tensors B_VIII Second Order Tensor Operators 1 Tensor Product of Two Vector Operators 2 Cartesian Components of the Tensor in the General Case C_VIII Multipolar Moments 1 Electrical Multipole Moments 2 Magnetic Multipole Moments 3 Multipole Moments of a Quantum System for a Given Kinetic Moment Multiplicity J IX Groups SU(2) and SU(3) A System of Discernible but Equivalent Particles B SU(2) Group and Isospin Symmetry C Symmetry SU(3) A_IX the Nature of a Particle Is Equivalent to an Internal Quantum Number 1 Partial or Total Antisymmetrization of a State Vector 2 Correspondence Between the States of Two Physical Systems 3 Physical Consequences B_IX Operators Changing the Symmetry of a State Vector by Permutation 1 Fermions 2 Bosons X Symmetry Breaking A Magnetism, Breaking of the Rotation Symmetry B Some Other Examples APPENDIX I The Reversal of Time 1 Time Reversal in Classical Mechanics 2 Antilinear and Antiunitary Operators in Quantum Mechanics 3 Time Reversal and Antilinearity 4 Explicit Form of the Time Reversal Operator 5 Applications
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐