图书简介
This book first presents the state-of-the-art research in infrastructure robotics and key methodologies that enable the development of intelligent robots for operation in civil infrastructure environments. The first part of the book describes sensing, perception, localization, map building, environmental and operation awareness, motion and task planning, design methodologies, robot assistance paradigms and physical human-robot collaboration. The second part presents many case studies of robotic systems developed for real-world applications in maintaining various civil infrastructures, including steel bridges, tunnels, underground water mains, electric power transmission towers, underwater structures, and sewer pipes. Lessons learning in deployment of intelligent robots in practical applications are discussed.
Contributors 15 Preface 17 Acronyms 21 I Methodologies 22 1 Infrastructure Robotics: an introduction 23 1.1 Infrastructure Inspection and Maintenance . . . . . . . . . . . . . 24 1.2 Infrastructure Robotics . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.3 Considerations in infrastructure robotics research . . . . . . . . 37 1.4 Opportunities and Challenges . . . . . . . . . . . . . . . . . . . . 40 1.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2 Design of Infrastructure Robotic Systems 49 2.1 Special Features of Infrastructure . . . . . . . . . . . . . . . . . . 49 2.2 The Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.3 Types of Robots and their Design and Operation . . . . . . . . . 52 2.4 Software System Design . . . . . . . . . . . . . . . . . . . . . . . . 56 2.5 An example: Development of the CROC Design Concept . . . . 57 2.6 Some Other Examples . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.7 Actuator Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3 Perception in complex and unstructured infrastructure environments 71 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2 Sensor description . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.2.1 2D LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.2.2 3D LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2.3 Sonar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2.4 Monocular camera . . . . . . . . . . . . . . . . . . . . . 76 3.2.5 Stereo camera . . . . . . . . . . . . . . . . . . . . . . . . 77 3.2.6 GRB-D camera . . . . . . . . . . . . . . . . . . . . . . . . 77 3.3 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.4 Theoretical Foundations . . . . . . . . . . . . . . . . . . . . . . . . 80 3.4.1 Extended Kalman filter . . . . . . . . . . . . . . . . . . . 80 3.4.2 Nonlinear least squares . . . . . . . . . . . . . . . . . . 83 3.4.3 Environment representations . . . . . . . . . . . . . . . 87 3.4.4 Mapping techniques . . . . . . . . . . . . . . . . . . . . 89 3.4.5 localization techniques . . . . . . . . . . . . . . . . . . . 94 3.4.6 SLAM techniques . . . . . . . . . . . . . . . . . . . . . . 97 3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.5.1 localization . . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.5.2 SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.6 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.6.1 Mapping in confined space . . . . . . . . . . . . . . . . 107 3.6.2 localization in confined space . . . . . . . . . . . . . . 108 3.6.3 SLAM in underwater bridge environment . . . . . . . . 109 3.7 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . 110 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4 Machine Learning and Computer Vision Applications in Civil Infrastructure Inspection and Monitoring 113 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.2 GNN-based Pipe Failure Prediction . . . . . . . . . . . . . . . . . 115 4.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . 117 4.2.3 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . 118 4.2.4 GNN Learning . . . . . . . . . . . . . . . . . . . . . . . . 119 4.2.5 Failure Pattern Learning . . . . . . . . . . . . . . . . . . 122 4.2.6 Failure Predictor . . . . . . . . . . . . . . . . . . . . . . . 123 4.2.7 Experimental Study . . . . . . . . . . . . . . . . . . . . . 124 4.3 Computer Vision Based Signal Aspect Transition Detection . 126 4.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.3.2 Signal Detection Model . . . . . . . . . . . . . . . . . . 127 4.3.3 Track Detection Model . . . . . . . . . . . . . . . . . . . 129 4.3.4 Optimization for Target Locating . . . . . . . . . . . . . 133 4.4 Conclusion and Discussions . . . . . . . . . . . . . . . . . . . . . 138 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5 Coverage Planning and Motion Planning of Intelligent Robots for Civil Infrastructure Maintenance 147 5.1 Introduction to Coverage and Motion Planning . . . . . . . . . . 147 5.2 Coverage Planning Algorithms for a Single Robot . . . . . . . . 150 5.2.1 An Off-line Coverage Planning Algorithm . . . . . . . 150 5.2.2 A Real-time Coverage Planning Algorithm . . . . . . . 155 5.3 Coverage Planning Algorithms for Multiple Robots . . . . . . . 161 5.3.1 Base Placement Optimization . . . . . . . . . . . . . . 161 5.3.2 Area Partitioning and Allocation . . . . . . . . . . . . . 166 5.3.3 Adaptive Coverage Path Planning . . . . . . . . . . . . 171 5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 6 Methodologies in Physical Human-Robot Collaboration for Infrastructure Maintenance 181 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 6.2 Autonomy, tele-operation, and physical human-robot collaboration . . . . . . . . . . . . . . . . . . . . . . 183 6.2.1 Autonomous Robots . . . . . . . . . . . . . . . . . . . . 184 6.2.2 Tele-operated Robots . . . . . . . . . . . . . . . . . . . . 186 6.2.3 Physical Human-Robot Collaboration . . . . . . . . . . 188 6.3 Control Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 6.3.1 Motion Control . . . . . . . . . . . . . . . . . . . . . . . . 190 6.3.2 Force Control . . . . . . . . . . . . . . . . . . . . . . . . 192 6.4 Adaptive Assistance paradigms . . . . . . . . . . . . . . . . . . . 194 6.4.1 Manually Adapted Assistance . . . . . . . . . . . . . . 196 6.4.2 Assistance-As-Needed paradigms . . . . . . . . . . . . 197 6.4.3 Performance-based assistance . . . . . . . . . . . . . . 198 6.4.4 Physiology-based assistance . . . . . . . . . . . . . . . 199 6.5 Safety framework for physical human-robot collaboration . . . 200 6.6 Performance-based role change . . . . . . . . . . . . . . . . . . . 203 6.7 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 II Robotic system design and applications 216 7 Steel Bridge Climbing Robot Design and Development 219 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 7.2 Recent climbing robot platforms developed by the ARA lab . . 225 7.3 Overall Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 7.3.1 Mechanical Design and Analysis . . . . . . . . . . . . . 230 7.4 Overall Control Architecture . . . . . . . . . . . . . . . . . . . . . . 235 7.4.1 Control System Framework . . . . . . . . . . . . . . . . 236 7.5 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 7.5.1 Switching control . . . . . . . . . . . . . . . . . . . . . . 248 7.5.2 Robot navigation in mobile and Worming transformation . . . . . . . . . . . 251 7.5.3 Robot Deployment . . . . . . . . . . . . . . . . . . . . . 254 7.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . 256 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 8 Underwater robots for cleaning and inspection of underwater structures 265 8.1 Introduction to maintenance of underwater structures . . . . . 266 8.2 Robot system design . . . . . . . . . . . . . . . . . . . . . . . . . . 268 8.2.1 Hull design and manoeuvring system . . . . . . . . . . 270 8.2.2 Robot arms for docking and water-jet cleaning . . . . 271 8.3 Sensing and perception in underwater environments . . . . . . 274 8.3.1 Underwater Simultaneous Localisation and Mapping (SLAM) around bridge piles . . . . . . . . . . . . . . . . 275 8.3.2 Marine growth identification . . . . . . . . . . . . . . . 277 8.4 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 280 8.5 Robot navigation, motion planning and system integration . . 282 8.5.1 Localisation and navigation in open water . . . . . . . 282 8.5.2 System integration . . . . . . . . . . . . . . . . . . . . . 284 8.6 Testing in a lab setup and trials in the field . . . . . . . . . . . . . 285 8.6.1 Operation procedure . . . . . . . . . . . . . . . . . . . . 287 8.6.2 Autonomous navigation in narrow environments . . . 289 8.6.3 Vision-based marine growth removing process . . . . 291 8.6.4 Inspection and marine growth identification . . . . . . 294 8.7 Reflection and lessons learned . . . . . . . . . . . . . . . . . . . . 295 8.8 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . 297 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 9 Tunnel structural inspection and assessment using an autonomous robotic system 301 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 9.2 ROBO-SPECT Project . . . . . . . . . . . . . . . . . . . . . . . . . . 304 9.2.1 Robotic System . . . . . . . . . . . . . . . . . . . . . . . 305 9.2.2 Intelligent Global Controller (IGC) . . . . . . . . . . . . 310 9.2.3 Ground Control Station . . . . . . . . . . . . . . . . . . 311 9.2.4 Structural Assessment Tool . . . . . . . . . . . . . . . . 311 9.3 Inspection Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 312 9.4 Extended Kalman Filter (EKF) for Mobile Vehicle Localization . 316 9.5 Mobile Vehicle Navigation . . . . . . . . . . . . . . . . . . . . . . . 319 9.6 Field Experimental Results . . . . . . . . . . . . . . . . . . . . . . 319 9.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 10 BADGER: Intelligent robotic system for underground construction 329 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 10.2 Boring Systems and Methods . . . . . . . . . . . . . . . . . . . . . 333 10.2.1 Directional Drilling Methods . . . . . . . . . . . . . . . 333 10.2.2 Drilling Robotic Systems . . . . . . . . . . . . . . . . . 334 10.3 Main drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 10.4 BADGER System and Components . . . . . . . . . . . . . . . . . 339 10.4.1 Main Systems Description . . . . . . . . . . . . . . . . . 341 10.4.2 BADGER Operation . . . . . . . . . . . . . . . . . . . . . 343 10.5 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 11 Robots for Underground Pipe Condition Assessment 353 11.1 Introduction to Ferro-Magnetic Pipeline Maintenance . . . . . . 353 11.1.1 NDT Inspection Taxonomy . . . . . . . . . . . . . . . . 355 11.2 Inspection Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 11.2.1 Robot Kinematics and Locomotion . . . . . . . . . . . 358 11.3 PEC Sensing for Ferromagnetic Wall Thickness Mapping . . . . 364 11.3.1 Hardware and Software System Architecture . . . . . 366 11.4 Gaussian Processes for Spatial Regression from Sampled Inspection Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 11.4.1 Gaussian Processes . . . . . . . . . . . . . . . . . . . . 371 11.5 Field Robotic CA Inspection Results . . . . . . . . . . . . . . . . 375 11.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 378 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 12 Robotics and Sensing for Condition Assessment of Wastewater Pipes 387 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 12.2 Non-destructive Sensing System for Condition Assessment of Sewer Walls . . . . . . . . . . . . . 391 12.3 Robotic Tool for Field Deployment . . . . . . . . . . . . . . . . . . 400 12.4 Laboratory Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 403 12.5 Field Deployment and Evaluation . . . . . . . . . . . . . . . . . . . 406 12.6 Lessons Learned and Future Directions . . . . . . . . . . . . . . 408 12.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 13 A climbing robot for maintenance operations in confined spaces 417 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 13.2 Robot Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 13.3 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 13.3.1 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . 429 13.3.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 13.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 13.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 14 Multi-UAV systems for inspection of industrial and public infrastructures 449 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 14.2 Multi-UAV Inspection of Electrical Power Systems . . . . . . . . 454 14.2.1 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 454 14.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 455 14.3 Inspection Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 14.3.1 Vehicle Routing Problem . . . . . . . . . . . . . . . . . . 457 Graph-based representation of the problem . . . . . . . . . . . . . . . 458 MILP formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460 14.4 On-board Online Semantic Mapping . . . . . . . . . . . . . . . . . 467 14.4.1 GNSS-endowed Mapping System . . . . . . . . . . . . 468 14.4.2 Reflectivity and Geometry-based Semantic Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469 14.4.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 471 14.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476 15 Robotic Platforms for Inspection of Oil Refineries 481 15.1 Refining Oil for Fuels and Petrochemical Basics . . . . . . . . . 482 15.2 The Inspection Process . . . . . . . . . . . . . . . . . . . . . . . . 485 15.3 Inspection and Mechanical Integrity of oil refinery components 490 15.3.1 Liquid Storage Tank Inspection . . . . . . . . . . . . . 491 15.3.2 Pressurized Vessels Inspection . . . . . . . . . . . . . 493 15.3.3 Process Pipping . . . . . . . . . . . . . . . . . . . . . . . 496 15.3.4 Heat Exchanger Bundles . . . . . . . . . . . . . . . . . 498 15.4 Plant Operations, Surveillance, Maintenance Activities, and Others . . . . . . . . . . . . . 499 15.4.1 Surveillance, Operations, and Maintenance of Oil and Gas Refineries . . . . . . . . . . 499 15.4.2 Safety and Security . . . . . . . . . . . . . . . . . . . . . 502 15.4.3 Utilities and Support Activities . . . . . . . . . . . . . . 503 15.5 Robotic Systems for Inspection . . . . . . . . . . . . . . . . . . . 504 15.5.1 Robotics for Storage Tanks . . . . . . . . . . . . . . . . 507 15.5.2 Robotics for Pressure Vessels . . . . . . . . . . . . . . 513 15.5.3 Robotics for Process Piping . . . . . . . . . . . . . . . 521 15.5.4 Robotics Heat Exchanger Bundles . . . . . . . . . . . 525 15.6 Robotics for Plant Operations, Surveillance, Maintenance, and other related activities . . . . . . . . . . . . . . . . . . . . . . . . . 527 15.6.1 Operations, Surveillance, and Maintenance of Oil and Gas Refineries with Robotic systems . . .. . . 527 15.6.2 Safety and Security Robotics . . . . . . . . . . . . . . . 531 15.6.3 Robotics for Utilities and Support Activities . . . . . . 532 15.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533 16 Drone-based Solar Cell Inspection With Autonomous Deep Learning 535 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536 16.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 536 16.1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . 539 16.1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 16.2 Aerial Robot and Detection Framework . . . . . . . . . . . . . . . 542 16.2.1 Simulation Environment . . . . . . . . . . . . . . . . . . 545 16.2.2 Solar Panel Detection . . . . . . . . . . . . . . . . . . . 545 16.2.3 Aerial Robot Trajectory . . . . . . . . . . . . . . . . . . . 548 16.2.4 Sensory Instrumentation for Aerial Robot . . . . . . . 550 16.3 Learning Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 552 16.3.1 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . 553 16.3.2 CNN Architecture . . . . . . . . . . . . . . . . . . . . . . 556 16.3.3 Performance Evaluation Measures . . . . . . . . . . . 557 16.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566 17 Aerial Repair and Aerial Additive Manufacturing 579 17.1 Review of state of the art in additive manufacturing at architectural scales . . . . . . . .. . . . . 580 17.2 Review of demonstrations of aerial manufacturing and repair . 587 17.2.1 Demands and Challenges . . . . . . . . . . . . . . . . . 590 17.2.2 Future Prospects . . . . . . . . . . . . . . . . . . . . . . 594 17.3 Initial Experimental Evaluations . . . . . . . . . . . . . . . . . . . 596 17.4 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . 598 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐