图书简介
Building upon the knowledge introduced in The Data Science Framework, this book provides a comprehensive and detailed examination of each aspect of Data Analytics, both from a theoretical and practical standpoint. The book explains representative algorithms associated with different techniques, from their theoretical foundations to their implementation and use with software tools.Designed as a textbook for a Data Analytics Fundamentals course, it is divided into seven chapters to correspond with 16 weeks of lessons, including both theoretical and practical exercises. Each chapter is dedicated to a lesson, allowing readers to dive deep into each topic with detailed explanations and examples. Readers will learn the theoretical concepts and then immediately apply them to practical exercises to reinforce their knowledge. And in the lab sessions, readers will learn the ins and outs of the R environment and data science methodology to solve exercises with the R language. With detailed solutions provided for all examples and exercises, readers can use this book to study and master data analytics on their own. Whether you’re a student, professional, or simply curious about data analytics, this book is a must-have for anyone looking to expand their knowledge in this exciting field.
Contents.- Chapter 1. Introduction to data science and data analytics 1.- 1.1 About Data Science.- 1.2 About the EDISON Project and Data Science Framework.- 1.2.1 The EDISON project.- 1.2.2 The EDISON Data Science Framework.- 1.3 About Data Analytics.- 1.3.1 Data Analytics Competences .- 1.3.2 Data Analytics Body of Knowledge.- 1.3.3 Data Analytics Model Curriculum Approach .- 1.3.4 Data Analytics Professional Profiles .- 1.4 About this Book .- Chapter 2. Data …… 49.- A. Theory.- 2.1 Introduction .- 2.2 Characteristic .- 2.2.1 Definition of characteristic .- 2.2.2 Types of characteristics .- 2.3 Data .- 2.3.1 Definition of Data.- 2.3.2 Types of data from their nature.- 2.3.3 Types of data from their storage .- 2.4 Available Data .- 2.4.1 Experiment .- 2.4.2 Data population .- 2.4.3 Data Sample .- 2.4.4 Data Quality .- 2.5 Frequency .- 2.5.1 Definition of frequency .- 2.5.2 Types of frequency .- 2.5.3 Frequency of grouped Data.- 2.5.4 Mode.- 2.6 Mean.- 2.6.1 Definition of Mean .- 2.6.2 Arithmetic Mean .- 2.6.3 Variance and Standard Deviation .- 2.7 Median .- 2.7.1 Range .- 2.7.2 Median .- 2.7.3 Quantiles .- 2.7.4 Quantiles range.- B. Computer Based Solving .- 2.8 Reproject .- 2.9 R graphical user interface .- 2.10 Data exercises solves with R.- C. Data Exercises solves .- 2.11 Handmade exercises .- 2.12 Exercises solves in R.- Annex. Data Extended Concepts .- 2.A.1 Frequency .- 2.A.2 Mean.- Chapter 3. Probability .- A. Theory .- 3.1 Introduction .- 3.2 Event .- 3.3 Sets theory actions and operations .- 3.4 La Place or classic probability.- 3.5 Bayesian Probability .- 3.6 Probability distribution of random variables .- 3.6.1 Random Variable.- 3.6.2 Probability distribution .- 3.6.3 Discrete probability distributions .- 3.6.3.1 Bernoulli Probability distribution.- 3.6.3.2 Binomial Probability distribution.- 3.6.3.3 Geometric Probability distribution .- 3.6.3.4 Poison Probability distribution .- 3.6.4 Continuous probability distribution .- 3.6.4.1 Normal Distribution .- 3.6.4.2 Pearson chi square distribution.- 3.6.4.3 T the student distribution .- 3.6.4.4 F the fisher distribution .- B. Computer Based Solving .- C. Probability exercises solved .- 3.7 Handmade exercises .- 3.8 Exercises solved in R.- Annex. Probability extended concepts.- Chapter 4. Anomaly Detection .- Juan. J Cuadrado-Gallego, Yuri Demchenko, Josefa Gómez, Adelhamid Tayebi.- A. Theory.- 4.1 Introduction .- 4.2 Anomaly detection basic on Statistics .- 4.2.1 Anomaly detection Basic on the mean and the standard deviation .- 4.2.2 Anomaly detection based on the quartiles.- 4.2.3 Anomaly detection based errors of the residuals .- 4.3 Anomaly detection based on proximity. K nearest neighbor algorithm .- 4.4 Anomaly detection based on density simplified local outlier factor algorithm.- B. Computer based solving.- 4.5 R packages .- 4.6 Anomaly detection the exercise solves with R .- C. Anomaly detection exercises solves .- 4.7 Handmade exercises .- 4.8 Exercises solved in R .- .- Chapter 5. Unsupervised Classification .- Juan. J Cuadrado-Gallego, Yuri Demchenko, Adelhamid Tayebi.- A. Theory .- 5.1 Introduction .- 5.2 Unsupervised classification based on distances K Meand Algorithm.- 5.3 Agglomerative hierarchical clustering .- B. Computer Based Solved .- 5.4 R studio .- 5.5 Unsupervised classification exercises solves
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐