图书简介
This volume comprises the second part of the proceedings of the 10th International Conference on Finite Volumes for Complex Applications, FVCA, held in Strasbourg, France, during October 30 to November 3, 2023.The Finite Volume method, and several of its variants, is a spatial discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods are also built to preserve some properties of the continuous equations, including maximum principles, dissipativity, monotone decay of the free energy, asymptotic stability, or stationary solutions. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. In recent years, the efficient implementation of these methods in numerical software packages, more specifically to be used in supercomputers, has drawn some attention. The first volume contains all invited papers, as well as the contributed papers focusing on finite volume schemes for elliptic and parabolic problems. They include structure-preserving schemes, convergence proofs, and error estimates for problems governed by elliptic and parabolic partial differential equations.This volume is focused on finite volume methods for hyperbolic and related problems, such as methods compatible with the low Mach number limit or able to exactly preserve steady solutions, the development and analysis of high order methods, or the discretization of kinetic equations.
W. Aboussi, M. Ziggaf, I. Kissami and M. Boubekeur_A finite volume scheme with a diffusion control parameter on unstructured hybrid mesh: application to two-dimensional Euler equations.- L. Baroukh and E. Audusse, Flow of Newtonian fluids in a pressurized pipe.- W. Barsukow, Truly multi-dimensional all-speed methods for the Euler equations.- T. Bellotti, Monotonicity for genuinely multi-step methods: results and issues from a simple lattice Boltzmann scheme.- C. Birke and C. Klingenberg, A Low Mach Number Two-speed Relaxation Scheme for Ideal MHD Equations.- G. Birke, C. Engwer, S. May and F. Streitbürger, Domain of Dependence stabilization for the acoustic wave equation on 2D cut-cell meshes.- J. Bussac and K. Saleh, Numerical simulation of a barotropic two-phase flow model with miscible phases.- S. Chu and A. Kurganov, Local Characteristic Decomposition Based Central-Upwind Scheme for Compressible Multifluids.- F. Dubois and J. Antonio Rojas-Quintero, Simpson’s quadrature for a nonlinear variational symplectic scheme.- E. Chudzik, C. Helzel and Yanick-Florian Kiechle, An Active Flux Method for the Vlasov-Poisson System.- M. Dumbser, S. Busto and A. Thomann, On thermodynamically compatible finite volume schemes for overdetermined hyperbolic systems.- M. Ferrand, Jean-Marc Hérard, T. Norddine and S. Ruget, A scheme using the wave structure of second-moment turbulent models for incompressible flows.- T. Galié, S. Kokh, Ahmad El Halabi, K. Saleh and P. Fernier, Study of a Numerical Scheme with Transport-Acoustic Operator Splitting on a Staggered Mesh.- C. Fiorini, Uncertainty propagation of the shock position for hyperbolic PDEs using a sensitivity equation method.- C. Ghosn, T. Goudon and S. Minjeaud, Staggered MUSCL scheme for Euler equation.- M. Girfoglio, A. Quaini and G. Rozza, GEA: a new finite volume-based open source code for the numerical simulation of atmospheric and ocean flows.- P. Helluy and R. Hélie, Stable second order boundary conditions for kinetic approximations.- A. Iollo, G. Puppo and A. Thomann, Two-dimensional linear implicit relaxed scheme for hyperbolic conservation laws.- H. H. Holm and F. Beiser, Reducing Numerical Artifacts by Sacrificing Well-Balance for Rotating Shallow-Water Flow.- G. Jomée and Jean-Marc Hérard, Relaxation process in an immiscible three-phase flow model.- J. Jung, I. Lannabi and V. Perrier, On the convergence of the Godunov scheme with a centered discretization of the pressure gradient.- J. Keim, A. Schwarz, S. Chiocchetti, A. Beck and C. Rohde, A Reinforcement Learning Based Slope Limiter for Two-Dimensional Finite Volume Schemes.- S.-C. Klein, Essentially Non-Oscillatory Schemes using the Entropy Rate Criterion.- T. Laidin and T. Rey, Hybrid Kinetic/Fluid numerical method for the Vlasov-Poisson-BGK equation in the diffusive scaling.- M. Mehrenberger, L. Navoret and Anh-Tuan Vu, Composition schemes for the guiding-center model.- M. Ndjinga and K. Ait-Ameur, TVD analysis of a (pseudo-)staggered scheme for the isentropic Euler equations.- F. Peru, Backward reconstruction for non resonant triangular systems of conservation laws.- Sri Redjeki Pudjaprasetya and P. V. Swastika, Two-layer exchange flow with time-dependent barotropic forcing.- G. Schnücke, Split Form Discontinuous Galerkin Methods for Conservation Laws.- L. Renelt, C. Engwer and M. Ohlberger, An optimally stable approximation of reactive transport using discrete test and infinite trial spaces.- A. Toufaili, S. Gavrilyuk, O. Hurisse and Jean-Marc Hérard, An hybrid solver to compute a turbulent compressible model.
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐