图书简介
This is the second of two volumes on the genesis of quantum mechanics in the first quarter of the 20th century. It covers the rapid transition from the old to the new quantum theory in the years 1923-1927.
8 Introduction to Volume 2; 8.1 Overview; 8.2 Quantum theory in the early 1920s: deficiencies and discoveries; 8.3 Atomic structure a la Bohr; 8.3.1. Important clues from X-ray spectroscopy; 8.3.2. Electron arrangements and the emergence of the exclusion principle; 8.3.3. The discovery of electron spin; 8.4 The dispersion of light: a gateway to a new mechanics; 8.4.1. The Lorentz-Drude theory of dispersion; 8.4.2. Dispersion theory and the Bohr model; 8.4.3. Final steps to a correct quantum dispersion formula; 8.4.4. A generalized dispersion formula for inelastic light scattering- the Kramers-Heisenberg paper; 8.5 The genesis of matrix mechanics; 8.5.1. Intensities, and another look at the hydrogen atom; 8.5.2. The Umdeutung paper; 8.5.3. The new mechanics receives an algebraic framing-the Two-Man-Paper of Born and Jordan; 8.5.4. Dirac and the formal connection between classical and quantum mechanics; 8.5.5. The Three-Man-Paper [Dreimannerarbeit]-completion of the formalism of matrix mechanics; 8.6 The genesis of wave mechanics; 8.6.1. The mechanical-optical route to quantum mechanics; 8.6.2. Erwin Schrodinger’s wave mechanics; 8.7 The new theory repairs and extends the old; 8.8 Statistical aspects of the new quantum formalisms; 8.9 The Como and Solvay conferences, 1927; 8.10 Von Neumann puts quantum mechanics in Hilbert space; III. Transition to the New Quantum Theory; 9. The Exclusion Principle and Electron Spin; 9.1 The road to the exclusion principle; 9.1.1. Bohr’s second atomic theory; 9.1.2. Clues from X-ray spectra; 9.1.3. The filling of electron shells and the emergence of the exclusion principle; 9.2 The discovery of electron spin; 10.Dispersion Theory in the Old Quantum Theory; 10.1 Classical theories of dispersion; 10.1.1. Damped oscillations of a charged particle; 10.1.2. Forced oscillations of a charged particle; 10.1.3. The transmission of light: dispersion and absorption; 10.1.4. The Faraday effect; 10.1.5. The empirical situation up to ca. 1920; 10.2 Optical dispersion and the Bohr atom; 10.2.1. The Sommerfeld-Debye theory; 10.2.2. Dispersion theory in Breslau: Ladenburg and Reiche; 10.3 The correspondence principle of Van Vleck and Kramers; 10.3.1. Van Vleck and the correspondence principle for emission and absorption of light; 10.3.2. Dispersion in a classical general multiply-periodic system; 10.3.3. The Kramers dispersion formula; 10.4. Intermezzo: the BKS theory and the Compton effect; 10.5. The Kramers-Heisenberg paper and the Thomas-Reiche-Kuhn sum rule; 11.Heisenberg’s Umdeutung paper; 11.1 Heisenberg in Copenhagen; 11.2 A return to the hydrogen atom; 11.3 From Fourier components to transition amplitudes; 11.4 A new quantization condition; 11.5 Heisenberg’s Umdeutung paper: a new kinematics; 11.6 Heisenberg’s Umdeutung paper: a new mechanics; 12.The Consolidation of Matrix Mechanics; 12.1 The Two-Man-Paper of Born and Jordan; 12.2 Dirac’s formulation of quantum mechanics; 12.3 The Three-Man-Paper of Born, Heisenberg, and Jordan; 12.3.1. First chapter: systems of a single degree of freedom.; 12.3.2. Second chapter: foundations of the theory of systems of arbitrarily many degrees of freedom.; 12.3.3. Third chapter: connection with the theory of eigenvalues of Hermitian forms.; 12.3.4. Third chapter (cont’d): continuous spectra.; 12.3.5. Fourth chapter: physical applications of the theory.; 13.De Broglie’s Matter Waves and Einstein’s Quantum Theory of the Ideal Gas; 13.1 De Broglie and the introduction of wave-particle duality; 13.2 Wave interpretation of a particle in uniform motion; 13.3 Classical extremal principles in optics and mechanics.; 13.4 De Broglie’s mechanics of waves; 13.5 Bose-Einstein statistics and Einstein’s quantum theory of the ideal gas; 14.Schrodinger and Wave Mechanics; 14.1 Erwin Schrodinger: early work in quantum theory; 14.2 Schrodinger and gas theory; 14.3 The first (relativistic) wave equation; 14.4 Four papers on non-relativistic wave mechanics; 14.4.1. Quantization as an eigenvalue problem. Part I; 14.4.2. Quantization as an eigenvalue problem. Part II; 14.4.3. Quantization as an eigenvalue problem. Part III; 14.4.4. Quantization as an eigenvalue problem. Part IV; 14.5 The equivalence paper.; 14.6 Reception of wave mechanics; 15.Successes and Failures of the Old Quantum Theory Revisited; 15.1 Fine Structure 1925-1927; 15.2 Intermezzo: Kuhn losses suffered and recovered; 15.3 External Field Problems 1925-1927; 15.3.1. The anomalous Zeeman effect: matrix-mechanical treatment; 15.3.2. The Stark effect: wave-mechanical treatment; 15.4 The problem of helium; 15.4.1. Heisenberg and the helium spectrum: degeneracy, resonance and the exchange force; 15.4.2. Perturbative attacks on the multi-electron problem; 15.4.3. The helium ground state: perturbation theory gives way to variational methods; IV. The Formalism of Quantum Mechanics and Its Statistical Interpretation; 16.Statistical Interpretation of Matrix and Wave Mechanics; 16.1 Evolution of probability concepts from the old to the new quantum theory; 16.2 The statistical transformation theory of Jordan and Dirac; 16.2.1. Jordan’s and Dirac’s versions of the statistical transformation theory; 16.2.2. Jordan’s New foundation . . . I; 16.2.3. Hilbert, von Neumann, and Nordheim on Jordan’s New foundation . . . I; 16.2.4. Jordan’s New foundation . . . II; 16.3 Heisenberg’s uncertainty relations; 16.4 Como and Solvay, 1927; 17.Von Neumann’s Hilbert Space Formalism; 17.1 Mathematical foundation . . . ; 17.2 Probability-theoretic construction . . . ; 17.3 From canonical transformations to transformations in Hilbert space; 18.Conclusion: Arch and Scaffold; 18.1 Continuity and discontinuity in the quantum revolution; 18.2 Continuity and discontinuity in two early quantum textbooks; 18.3 The inadequacy of Kuhn’s model of a scientific revolution; 18.4 Evolution of species and evolution of theories; 18.5 The role of constraints in the quantum revolution; 18.6 Limitations of the arch-and-scaffold metaphor; 18.7 Substitution and generalization; Appendices; C. The Mathematics of Quantum Mechanics; C.1 Matrix algebra; C.2 Vector Spaces (finite dimensional); C.3 Inner-product spaces (finite dimensional); C.4 A historical digression: integral equations and quadratic forms; C.5 Infinite-dimensional spaces; C.5.1. Topology: open and closed sets, limits, continuous functions, compact sets.; C.5.2. The first Hilbert space: l2; C.5.3. Function spaces: L2; C.5.4. The axiomatization of Hilbert space; C.5.5. A new notation: Dirac’s bras and kets; C.5.6. Operators in Hilbert Space: the von Neumann spectral theory
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐