图书简介
The book spans the entire QBIP process from foundation in fundamental theory, to development and machine-learning optimization of accurate potentials for real materials, to the application of the potentials to materials modeling and simulation of structural, thermodynamic, defect and mechanical properties of important metals and alloys.
1 Introduction; 1.1 Why quantum-based interatomic potentials?; 1.2 Basic concepts and nomenclature; 1.3 Failure of pure pair potentials in metals; 1.4 Guiding principles in metals for quantum-based potentials; 2 Fundamental Principles in Metals Physics; 2.1 Born-Oppenheimer or adiabatic approximation; 2.2 Density functional theory; 2.3 Small-core approximation and the valence binding energy in metals; 2.4 Guidance from the DFT electronic structure: simple metals vs. d-band metals; 2.5 Weak pseudopotentials and perturbation theory for simple metals; 2.6 Localized d-states for the narrow d bands in transition-series; 2.7 Generalized pseudopotential theory for d-band metals; 3 Interatomic Potentials in Simple Metals; 3.1 Simple-metal cohesive-energy functional in DFT; 3.2 Self-consistent electron screening; 3.3 Evaluation of the energy-wavenumber characteristic and volume term; 3.4 First-principles pair potentials for simple metals; 3.5 Long-range Friedel oscillations and materials application; 3.6 Higher-order corrections; 4 Interatomic Potentials in Metals with Empty or Filled d Bands; 4.1 Inclusion of sp-d hybridization and d-state overlap in the GPT cohesive- energy functional; 4.2 Zero-order pseudoatoms and optimized d basis states; 4.3 Modified FDB-GPT treatment for the special case of the noble metals; 4.4 Alternate resonant model potential approach; 4.5 Trends in first principles pair potentials with atomic number and volume; 5 Interatomic Potentials in Transition Metals; 5.1 GPT multi-ion potentials for metals with partially-filled d bands; 5.2 Simplified MGPT potentials for robust atomistic simulations; 5.3 Bond-order potentials for transition metals; 5.4 Inclusion of magnetism in bond-order and MGPT potentials; 6 Structural Phase Stability and High-Pressure Phase Transitions; 6.1 Useful basic concepts and computational tools; 6.2 QBIP-predicted structures and structural energies of the elements; 6.3 High-pressure phase stability and pressure-induced phase transitions; 7 Elastic Moduli and Phonons; 7.1 Quasihamonic lattice dynamics for QBIP applications; 7.2 Calculated qusiharmonic phonon spectra for elemental metals; 7.3 Elastic moduli for QBIP applications; 7.4 Thermodynamic properties in the QHLD limit; 7.5 Temperature-induced solid-solid phase transitions; 8 High-Temperature Properties, Melting and Phase Diagrams; 8.1 Important QBIP computational tools at high temperature; 8.2 Equation of state and high-temperature thermodynamic properties; 8.3 Melting and the pressure-temperature phase diagram; 8.4 Rapid solidification and polymorphism in transition metals; 9 Defects and Mechanical Properties; 9.1 Point defect formation and migration energies; 9.2 Salient elastic and deformation properties of bcc transition metals; 9.3 Screw dislocation atomic structure and mobility in bcc transition metals; 9.4 Multiscale modeling of single-crystal plasticity in bcc transition metals; 9.5 Grain-boundary atomic structure in bcc transition metals; 9.6 Defect properties in fcc transition metals; 10 Alloys and Intermetallic Compounds; 10.1 General constraints with composition as an independent environmental variable; 10.2 Nontransition-metal binary alloys and compounds; 10.3 Transition-metal aluminides and their phase diagrams; 10.4 The special case of Ca-Mg; 10.5 BOP treatment of transition-metal aluminides: TiAl; 10.6 Treating pure transition-metal alloys with the MGPT; 11 Local Volume Effects on Defects and Free Surfaces; 11.1 Local-density representations of the GPT and their application; 11.2 First-principles forces and stresses: the aGPT; 12 Extension to f-Band Actinide Metals and p-Band Simple Metals; 12.1 Localized p and f basis states in the GPT; 12.2 MGPT representations of the early actinide metals U and Pu; 13 Interatomic Potentials with Electron Temperature; 13.1 Some perspective on the importance of in transition-metal melting; 13.2 Extending the first-principles GPT to finite electron temperature; 13.3 Temperature-dependent MGPT potentials and the simulation of melt for Mo; Appendix A1. Units, Conversion Factors and Useful Physical Data; Appendix A2. Additional Elements of Generalized Pseudopotential Theory; Glossary of Acronyms and Abbreviations; Bibliography; Subject Index
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐