图书简介
This book proposes tools for analysis of multidimensional and metric data, by establishing a state-of-the-art of the existing solutions and developing new ones. It mainly focuses on visual exploration of these data by a human analyst, relying on a 2D or 3D scatter plot display obtained through Dimensionality Reduction (DR). Performing diagnosis of an energy system requires identifying relations between observed monitoring variables and the associated internal state of the system. Dimensionality reduction, which allows to represent visually a multidimensional dataset, constitutes a promising tool to help domain experts to analyse these relations. This book reviews existing techniques for visual data exploration and dimensionality reduction, and proposes new solutions to challenges in that field. In order to perform diagnosis of energy systems, domain experts need to establish relations between the possible states of a given system and the measurement of a set of monitoring variables.Classical dimensionality reduction techniques such as tSNE and Isomap are presented, as well as the new unsupervised technique ASKI and the supervised methods ClassNeRV and ClassJSE. A new approach, MING for local map quality evaluation, is also introduced. These methods are then applied to the representation of expert-designed fault indicators for smart-buildings, I-V curves for photovoltaic systems and acoustic signals for Li-ion batteries.
1 Data science context.- 1.1 Data in a metric space.- 1.1.1 Measuring dissimilarities and similarities .- 1.1.2 Neighbourhood ranks.- 1.1.3 Embedding space notations.- 1.1.4 Multidimensional data .- 1.1.5 Sequence data.- 1.1.6 Network data.- 1.1.7 A few multidimensional datasets .- 1.2 Automated tasks.- 1.2.1 Underlying distribution.- 1.2.2 Category identification.- 1.2.3 Data manifold analysis.- 1.2.4 Model learning.- 1.2.5 Regression.- 1.3 Visual exploration.- 1.3.1 Human in the loop using graphic variables.- 1.3.2 Spatialization and Gestalt principles.- 1.3.3 Scatter plots.- 1.3.4 Parallel coordinates.- 1.3.5 Colour coding.- 1.3.6 Multiple coordinated views and visual interaction.- 1.3.7 Graph drawing.- 2 Intrinsic dimensionality.- 2.1 Curse of dimensionality.- 2.1.1 Data sparsity.- 2.1.2 Norm concentration.- 2.2 ID estimation.- 2.2.1 Covariance-based approaches.- 2.2.2 Fractal approaches.- 2.2.3 Towards local estimation.- 2.3 TIDLE .- 2.3.1 Gaussian mixture modelling.- 2.3.2 Test of TIDLE on a two clusters case.- 3 Map evaluation.- 3.1 Objective and practical indicators.- 3.1.1 Subjectivity of indicators.- 3.1.2 User studies on specific tasks.- 3.2 Unsupervised global evaluation.- 3.2.1 Types of distortions.- 3.2.2 Link between distortions and mapping continuity.- 3.2.3 Reasons of distortions ubiquity.- 3.2.4 Scalar indicators.- 3.2.5 Aggregation.- 3.2.6 Diagrams.- 3.3 Class-aware indicators.- 3.3.1 Class separation and aggregation.- 3.3.2 Comparing scores between the two spaces.- 3.3.3 Class cohesion and distinction.- 3.3.4 The case of one cluster per class.- 4 Map interpretation.- 4.1 Axes recovery.- 4.1.1 Linear case: biplots .- 4.1.2 Non-linear case.- 4.2 Local evaluation.- 4.2.1 Point-wise aggregation.- 4.2.2 One to many relations with focus point.- 4.2.3 Many to many relations.- 4.3 MING.- 4.3.1 Uniform formulation of rank-based indicator.- 4.3.2 MING graphs.- 4.3.3 MING analysis for a toy dataset.- 4.3.4 Impact of MING parameters.- 4.3.5 Visual clutter.- 4.3.6 Oil flow.- 4.3.7 COIL-20 dataset.- 4.3.8 MING perspectives.- 5 Unsupervised DR.- 5.1 Spectral projections.- 5.1.1 Principal Component Analysis.- 5.1.2 Classical MultiDimensional Scaling.- 5.1.3 Kernel methods: Isompap, KPCA, LE.- 5.2 Non-linear MDS.- 5.2.1 Metric MultiDimensional Scaling.- 5.2.2 Non-metric MultiDimensional Scaling.- 5.3 Neighbourhood Embedding.- 5.3.1 General principle: SNE.- 5.3.2 Scale setting.- 5.3.3 Divergence choice: NeRV and JSE.- 5.3.4 Symmetrization.- 5.3.5 Solving the crowding problem: tSNE.- 5.3.6 Kernel choice.- 5.3.7 Adaptive Student Kernel Imbedding.- 5.4 Graph layout.- 5.4.1 Force directed graph layout: Elastic Embedding.- 5.4.2 Probabilistic graph layout: LargeVis.- 5.4.3 Topological method UMAP.- 5.5 Artificial neural networks.- 5.5.1 Auto-encoders.- 5.5.2 IVIS.- 6 Supervised DR.- 6.1 Types of supervision.- 6.1.1 Full supervision.- 6.1.2 Weak supervision.- 6.1.3 Semi-supervision.- 6.2 Parametric with class purity.- 6.2.1 Linear Discriminant Analysis.- 6.2.2 Neighbourhood Component Analysis.- 6.3 Metric learning.- 6.3.1 Mahalanobis distances.- 6.3.2 Riemannian metric.- 6.3.3 Direct distances transformation.- 6.3.4 Similarities learning.- 6.3.5 Metric learning limitations.- 6.4 Class adaptive scale.- 6.5 Classimap.- 6.6 CGNE.- 6.6.1 ClassNeRV stress.- 6.6.2 Flexibility of the supervision.- 6.6.3 Ablation study.- 6.6.4 Isolet 5 case study.- 6.6.5 Robustness to class misinformation.- 6.6.6 Extension to the type 2 mixture: ClassJSE.- 6.6.7 Extension to semi-supervision and weak-supervision.- 6.6.8 Extension to soft labels.- 7 Mapping construction.- 7.1 Optimization.- 7.1.1 Global and local optima.- 7.1.2 Descent algorithms.- 7.1.3 Initialization.- 7.1.4 Multi-scale optimization.- 7.1.5 Force-directed placement interpretation.- 7.2 Acceleration strategies.- 7.2
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐