Efficient One-Stage Video Object Detection by Exploiting Temporal Consistency.- Leveraging Action Affinity and Continuity for Semi-Supervised Temporal Action Segmentation.- Spotting Temporally Precise, Fine-Grained Events in Video.- Unified Fully and Timestamp Supervised Temporal Action Segmentation via Sequence to Sequence Translation.- Efficient Video Transformers with Spatial-Temporal Token Selection.- Long Movie Clip Classification with State-Space Video Models.- Prompting Visual-Language Models for Efficient Video Understanding.- Asymmetric Relation Consistency Reasoning for Video Relation Grounding.- Self-Supervised Social Relation Representation for Human Group Detection.- K-Centered Patch Sampling for Efficient Video Recognition.- A Deep Moving-Camera Background Model.- GraphVid: It Only Takes a Few Nodes to Understand a Video.- Delta Distillation for Efficient Video Processing.- MorphMLP: An Efficient MLP-Like Backbone for Spatial-Temporal Representation Learning.- COMPOSER: Compositional Reasoning of Group Activity in Videos with Keypoint-Only Modality.- E-NeRV: Expedite Neural Video Representation with Disentangled Spatial-Temporal Context.- TDViT: Temporal Dilated Video Transformer for Dense Video Tasks.- Semi-Supervised Learning of Optical Flow by Flow Supervisor.- Flow Graph to Video Grounding for Weakly-Supervised Multi-step Localization.- Deep 360° Optical Flow Estimation Based on Multi-Projection Fusion.- MaCLR: Motion-Aware Contrastive Learning of Representations for Videos.- Learning Long-Term Spatial-Temporal Graphs for Active Speaker Detection.- Frozen CLIP Models Are Efficient Video Learners.- PIP: Physical Interaction Prediction via Mental Simulation with Span Selection.- Panoramic Vision Transformer for Saliency Detection in 360° Videos.- Bayesian Tracking of Video Graphs Using Joint Kalman Smoothing and Registration.- Motion Sensitive Contrastive Learning for Self-Supervised Video Representation.- Dynamic Temporal Filtering In Video Models.- Tip-Adapter: Training-Free Adaption of CLIP for Few-Shot Classification.- Temporal Lift Pooling for Continuous Sign Language Recognition.- MORE: Multi-Order RElation Mining for Dense Captioning in 3D Scenes.- SiRi: A Simple Selective Retraining Mechanism for Transformer-Based Visual Grounding.- Cross-Modal Prototype Driven Network for Radiology Report Generation.- TM2T: Stochastic and Tokenized Modeling for the Reciprocal Generation of 3D Human Motions and Texts.- SeqTR: A Simple Yet Universal Network for Visual Grounding.- VTC: Improving Video-Text Retrieval with User Comments.- FashionViL: Fashion-Focused Vision-and-Language Representation Learning.- Weakly Supervised Grounding for VQA in Vision-Language Transformers.- Automatic Dense Annotation of Large-Vocabulary Sign Language Videos.- MILES: Visual BERT Pre-training with Injected Language Semantics for Video-Text Retrieval.- GEB : A Benchmark for Generic Event Boundary Captioning, Grounding and Retrieval.- A Simple and Robust Correlation Filtering Method for Text-Based Person Search.
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐