Latent Factor Analysis for High-dimensional and Sparse Matrices(SpringerBriefs in Computer Science)

高维稀疏矩阵的潜在因子分析:基于粒子群优化的方法

计算机科学技术基础学科

原   价:
443.75
售   价:
355.00
优惠
平台大促 低至8折优惠
发货周期:通常付款后3-5周到货!
作      者
出  版 社
出版时间
2022年11月19日
装      帧
平装
ISBN
9789811967023
复制
页      码
92
语      种
英文
版      次
2022
综合评分
暂无评分
我 要 买
- +
库存 30 本
  • 图书详情
  • 目次
  • 买家须知
  • 书评(0)
  • 权威书评(0)
图书简介
Latent factor analysis models are an effective type of machine learning model for addressing high-dimensional and sparse matrices, which are encountered in many big-data-related industrial applications. The performance of a latent factor analysis model relies heavily on appropriate hyper-parameters. However, most hyper-parameters are data-dependent, and using grid-search to tune these hyper-parameters is truly laborious and expensive in computational terms. Hence, how to achieve efficient hyper-parameter adaptation for latent factor analysis models has become a significant question.This is the first book to focus on how particle swarm optimization can be incorporated into latent factor analysis for efficient hyper-parameter adaptation, an approach that offers high scalability in real-world industrial applications.The book will help students, researchers and engineers fully understand the basic methodologies of hyper-parameter adaptation via particle swarm optimization in latent factor analysis models. Further, it will enable them to conduct extensive research and experiments on the real-world applications of the content discussed.
本书暂无推荐
本书暂无推荐
看了又看
  • 上一个
  • 下一个