图书简介
Biology, medicine and bio-chemistry have become data-centric fields for which Deep Learning methods are delivering ground-breaking results. Addressing high impact challenges, Deep Learning in Biology and Medicine provides an accessible and organic collection of Deep Learning essays on bioinformatics and medicine. It caters for a wide readership, ranging from machine learning practitioners and data scientists seeking methodological knowledge to address biomedical applications, to life science specialists in search of a gentle reference for advanced data analytics.With contributions from internationally renowned experts, the book covers foundational methodologies in a wide spectrum of life science applications including electronic health record processing, diagnostic imaging, text processing, as well as omics-data processing. This survey of consolidated problems is complemented by a selection of advanced applications including cheminformatics and biomedical interaction network analysis. A modern and mindful approach to the use of data-driven methodologies in the life sciences also requires careful consideration of the associated societal, ethical, legal and transparency challenges, covered in the concluding chapters of this book.Key Features: oThe first to bring deep learning techniques to the life science communities, whereas other books are focused on bringing life science knowledge to the deep learning communityoAn overview of consolidated approaches and methods as well as an up-to-date overview of the state-of-the-art methodologies and applications of deep learning in biology and medicine. As such, the book is also a useful guide to help navigate the literature, providing a reference for both practitioners and scientistsoThe book also includes several useful references to shared resources, i.e. datasets, code, networks, etc.
Introduction (Davide Bacciu, Paulo J G Lisboa and Alfredo Vellido); Deep Learning for Medical Imaging ( Jose Bernal, Kaisar Kushibar, Albert Clèrigues, Arnau Oliver, and Zabier Lladó); The Evolution of Mining Electronic Health Records in the Era of Deep Learning ( Isotta Landi, Jessica De Freitas, Brain A Kidd, Joel T Dudley, Benjamin S Glicksberg, and Riccardo Miotto); Natural Language Technologies in the Biomedical Domain (Horacio Rodríguez); Metabolically Driven Latent Space Learning for Gene Expression Data (Marco Barsacchi, Helena Andrés-Terré, and Pietro Lió); Deep Learning in Cheminformatics (Alessio Micheli and Marco Podda); Deep Learning Methods for Network Biology (Lorenzo Madeddu and Giovanni Stilo); The Need for Interpretable and Explainable Deep Learning in Medicine and Healthcare (Alfredo Vellido, Paulo J G Lisboa , and José D Martín); Ethical, Societal and Legal Issues in Deep Learning for Healthcare (Cecilia Panigutti, Anna Monreale, Giovanni Comad, and Dino Pedreschi);
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐