图书简介
User care at home is a matter of great concern since unforeseen circumstances might occur that affect people’s well-being. Technologies that assist people in independent living are essential for enhancing care in a cost-effective and reliable manner. Assisted care applications often demand real-time observation of the environment and the resident’s activities using an event-driven system. As an emerging area of research and development, it is necessary to explore the approaches of the user care system in the literature to identify current practices for future research directions. Therefore, this book is aimed at a comprehensive review of data sources (e.g., sensors) with machine learning for various smart user care systems. To encourage the readers in the field, insights of practical essence of different machine learning algorithms with sensor data (e.g., publicly available datasets) are also discussed. Some code segments are also included to motivate the researchers of the related fields to practically implement the features and machine learning techniques. It is an effort to obtain knowledge of different types of sensor-based user monitoring technologies in-home environments. With the aim of adopting these technologies, research works, and their outcomes are reported. Besides, up to date references are included for the user monitoring technologies with the aim of facilitating independent living.Research that is related to the use of user monitoring technologies in assisted living is very widespread, but it is still consists mostly of limited-scale studies. Hence, user monitoring technology is a very promising field, especially for long-term care. However, monitoring of the users for smart assisted technologies should be taken to the next level with more detailed studies that evaluate and demonstrate their potential to contribute to prolonging the independent living of people. The target of this book is to contribute towards that direction
1.Assisted Living.- 1. 1. Introduction .- 1.2. Surveys on Assisted Living.- 1.3. Assisted Living Projects.- 1.4. Target Users.- 1.4.1. Indoor Observations.- 1.4.2. Outdoor Observations.- 1.5. Privacy and Data Protection.- 1.6. Conclusion.- References.- 2. Sensors and Features for Assisted Living Technologies .- 2.1. Sensors in User care.- 2.1.1. Wearable Sensors.- 2.1.2. Smart Daily Objects.- 2.1.3. Environmental Sensors.- 2.1.2. Wearables with Ambient Sensors.- 2.1.3. Ambient Sensors in Robotic Assisted Living.- 2.2. Feature Extraction.- 2.2.1. Feature Extraction Using PCA.- 2.2.2. Kernel Principal Component Analysis (KPCA).- 2.2.3. Feature Extraction Using ICA.- 2.2.4. Linear Discriminant Analysis (LDA).- 2.2.5. Generalized Discriminant Analysis (GDA).- 2.3. Discussion.- 2.4. Conclusion.- References.- 3. Machine Learning.- 3.1 Shallow Machine Learning.- 3.1.1. Support Vector Machines.- vii.- 3.1.2. Random Forests.- 3.1.3. AdaBoost and Gradient Boosting.- 3.1.4. Nearest Neighbors .- 3.1.5. Examples.- 3.2. Deep Machine Learning.- 3.2.1. Deep Belief Networks (DBN).- 3.2.2. Convolutional Neural Network.- 3.2.3. Recurrent Neural Networks.- 3.2.4. Neural Structured Learning.- 3.2.4. Pre-trained deep learning models.- 3.3. Explainable AI (XAI).- 3.3.1. Local Explanations.- 3.3.2. Rule-based Explanations.- 3.3.3. Visual Explanations.- 3.3.4. Feature Relevance Explanations.- 3.4. Discussion.- 3.5. Conclusion.- References .- 4. Applications.- 4.1. Wearable Sensor-based Behavior Recognition.- 4.1.1. MHEALTH Dataset.- 4.1.2. Experimental Results on MHEALTH Dataset.- 4.1.3. PUC-Rio Dataset.- 4.1.4. Experimental Results on PUC-Rio Dataset.- 4.1.5. ARem Dataset.- 4.1.6. Experimental Results on AReM Dataset.- 4.3. Video Camera-based Behavior Recognition.- 4.3.1. Binary Silhouettes and Features.- 4.3.2. Depth Silhouettes and Features.- 4.3.3. 3-D Model-based HAR.- 4.4. Other Ambient Sensor-based Behavior Recognition.- 4.4.1. CASAS Dataset.- viii.- 4.4.2. Experimental Results.- 4.5. Conclusion.- References.
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐