图书简介
Mathematical Physics for Nuclear Experiments presents an accessible introduction to the mathematical derivations of key equations used in describing and analysing results of typical nuclear physics experiments. Instead of merely showing results and citing texts, crucial equations in nuclear physics such as the Bohr’s classical formula, Bethe’s quantum mechanical formula for energy loss, Poisson, Gaussian and Maxwellian distributions for radioactive decay, and the Fermi function for beta spectrum analysis, among many more, are presented with the mathematical bases of their derivation and with their physical utility.This approach provides readers with a greater connection between the theoretical and experimental sides of nuclear physics. The book also presents connections between well-established results and ongoing research. It also contains figures and tables showing results from the author’s experiments and those of his students to demonstrate experimental outcomes.This is a valuable guide for advanced undergraduates and early graduates studying nuclear instruments and methods, medical and health physics courses as well as experimental particle physics courses.Key features
Contains over 500 equations connecting theory with experiments.Presents over 80 examples showing physical intuition and illustrating concepts.Includes 80 exercises, with solutions, showing applications in nuclear and medical physics.
Preface About the Author Acknowledgements Symbols Radioactivity and Decay Law 1.1 THE RADIOACTIVE DECAY LAW 1.1.0.1 Solution 1.1.0.2 Solution 1.1.0.3 Solution 1.2 RADIOACTIVE DECAY CHAIN 1.2.1 The Bateman Equations 1.2.1.1 The System of Differential Equations 1.2.1.2 Laplace Transformations 1.2.1.3 Inverse Laplace Transformations or Partial Fractions 1.2.1.4 Solution 1.3 TRANSIENT AND SECULAR EQUILIBRIUM 1.3.0.1 Solution 1.3.0.2 Solution 1.3.1 Transient Equilibrium Applications 1.3.1.1 Solution 1.3.2 Matrix Exponential and Other Methods for Bateman Equations 1.4 RADIOACTIVE DECAY ENERGY CALCULATIONS 1.4.0.1 Solution 1.4.0.2 Solution 1.5 MATHEMATICAL ELEMENTS OF ALPHA DECAY 1.5.1 Basics of Alpha Decay 1.5.1.1 Solution 1.5.1.2 Solution 1.5.1.3 Solution 1.5.2 Geiger-Nuttall Law 1.6 MATHEMATICAL ASPECTS OF BETA DECAY 1.6.1 Beta Decay Equations and Spectra 1.6.1.1 Solution 1.6.1.2 Solution 1.6.2 Continuous beta spectrum and neutrinos 1.6.3 Transition rate and Fermi-Kurie Plots 1.7 MATHEMATICAL PHYSICS OF GAMMA DECAY 1.7.1 Isomeric Transition Energetics and Multipole Selection Rules 1.7.1.1 Solution 1.7.2 Internal Conversion Coefficients 1.7.2.1 Solution 1.7.3 Electron Capture versus Isomeric Transition 1.7.4 Auger Electrons 1.7.4.1 Solution 1.7.5 Coincidences and Angular Correlations 1.7.5.1 Solution 1.8 SPONTANEOUS FISSION 1.9 ANSWERS Probability and Statistics for Nuclear Experimental Data 2.1 PROBABILITY DISTRIBUTIONS AND THEIR CHARACTERISTICS 2.1.1 Cumulative Distribution 2.1.2 Expectation Values, Mean, Variance and Covariance 2.1.2.1 Solution 2.1.2.2 Solution 2.2 BINOMIAL DISTRIBUTION 2.2.0.1 Solution 2.2.0.2 Solution 2.2.0.3 Solution 2.3 POISSON DISTRIBUTION 2.3.0.1 Solution 2.3.0.2 Solution 2.3.0.3 Solution 2.3.0.4 Solution 2.3.0.5 Solution 2.4 GAUSSIAN OR NORMAL DISTRIBUTION 2.4.0.1 Solution 2.4.0.2 Solution 2.4.0.3 Solution 2.5 MAXWELLIAN DISTRIBUTION 2.6 CHI SQUARE DISTRIBUTION 2.6.0.1 Solution 2.7 EXPONENTIAL DISTRIBUTION 2.8 LANDAU AND OTHER DISTRIBUTIONS 2.9 DETERMINATION AND TESTS OF PROBABILITY DISTRIBUTIONS 2.9.1 Estimation of Mean, Variance and Covariance from Samples 2.9.2 Using Relative Frequency for Sample Mean and Variance 2.9.2.1 Solution 2.9.3 Chi-Square Test and other Statistical Tests on Experimental Data 2.10 UNCERTAINTIES: CALCULATION AND EXPRESSION 2.10.1 Accuracy and Precision, Error and Uncertainty 2.10.2 Statistical and Systematic Uncertainties 2.10.2.1 Statistical or Random Uncertainties 2.10.2.2 Systematic Uncertainties 2.10.3 Calculation, Estimation and Expression of Uncertainties 2.11 ERROR PROPAGATION 2.11.1 Error Propagation Formula 2.11.2 Examples of Error Propagation 2.11.2.1 Solution 2.11.2.2 Solution 2.11.2.3 Solution 2.12 ANSWERS Energy Loss of Heavy Charged Particles through Matter 3.1 GENERAL RESULTS AND PERTURBATION THEORY 3.1.0.1 Solution 3.2 BOHR’S CLASSICAL FORMULA 3.2.1 Terminology and Physical Basis 3.2.2 Classical Derivation 3.2.2.1 Solution 3.3 BETHE’S QUANTUM MECHANICAL FORMULA 3.3.1 Derivation of Differential Cross Section 3.3.2 Validity Conditions and Relativistic Corrections 3.3.2.1 Solution 3.4 BLOCH AND OTHER EXTENSIONS OF BETHE’S FORMULA 3.4.1 Summary of Corrections and Extensions 3.4.2 Bloch’s Correction and Extensions: Mathematical 3.4.2.1 Solution 3.4.2.2 Solution 3.4.2.3 Solution 3.4.2.4 Solution 3.4.2.5 Solution 3.5 RANGE OF HEAVY CHARGED PARTICLES 3.5.0.1 Solution 3.5.0.2 Solution 3.6 MEDICAL APPLICATIONS OF BRAGG PEAK 3.7 IDENTIFICATION OF PARTICLES AND OTHER APPLICATIONS 3.7.0.1 Solution 3.7.0.2 Solution 3.7.0.3 Solution 3.8 PSTAR, ASTAR AND OTHER SOFTWARE PACKAGES 1 3.9 RADIATIVE LOSS VIA BREMSSTRAHLUNG FOR HEAVY CHARGED PARTICLES 3.10 ANSWERS Energy Loss of Electrons and Positrons through Matter 4.1 COLLISIONAL LOSS AND MODIFIED BETHE FORMULA 4.1.0.1 Solution 4.1.0.2 Solution 4.1.0.3 Solution 4.2 RADIATIVE LOSS VIA BREMSSTRAHLUNG FOR LIGHT CHARGED PARTICLES 4.2.0.1 Solution 4.2.0.2 Solution 4.2.0.3 Solution 4.3 RANGE OF LIGHT CHARGED PARTICLES 4.3.0.1 Solution 4.3.0.2 Solution 4.3.1 Radiation Yield 4.4 ESTAR AND OTHER SOFTWARE PACKAGES 4.4.0.1 Solution 4.5 MULTIPLE COULOMB SCATTERING AND GAUSSIAN APPROXIMATIONS 4.6 TAMM-FRANK-CERENKOV RADIATION FORMULA 4.6.0.1 Solution 4.6.0.2 Solution 4.7 TRANSITION RADIATION 4.8 ANSWERS Interactions of Photons in Matter 5.1 PHOTON ATTENUATION AND THE EXPONENTIAL FUNCTION 5.1.0.1 Solution 5.1.0.2 Solution 5.1.0.3 Solution 5.1.0.4 Solution 5.1.0.5 Solution 5.2 PHOTOELECTRIC CROSS-SECTION AND BORN APPROXIMATION 5.2.1 Photoelectric Effect 5.2.1.1 Solution 5.2.1.2 Solution 5.2.1.3 Solution 5.2.2 Photoelectric Cross Section from Perturbation Theory 5.2.2.1 Initial and Final States 5.2.2.2 Interaction and Result 5.2.2.3 Solution 5.2.2.4 Solution 5.2.2.5 Solution 5.2.2.6 Solution 5.2.2.7 Solution 5.3 KLEIN-NISHINA FORMULA FOR COMPTON SCATTERING 5.3.1 Compton Scattering 5.3.1.1 Solution 5.3.1.2 Solution 5.3.1.3 Solution 5.3.1.4 Solution 5.3.2 Derivation of the Klein-Nishina formula 5.4 THOMSON AND RAYLEIGH SCATTERING 5.4.0.1 Solution 5.4.0.2 Solution 5.5 PAIR PRODUCTION AND BORN APPROXIMATION 5.5.1 Kinematics of Pair/Triplet Production 5.5.1.1 Solution 5.5.1.2 Solution 5.5.2 Differential Cross Section for Pair Production 5.6 ANSWERS General Mathematical Definitions and Derivations A.1 CROSS SECTIONS A.1.1 Scattering and Absorption Cross Sections A.1.2 Differential Cross Sections A.1.3 Total Cross Sections A.2 SCHROEDINGER’S EQUATION AND CROSS SECTIONS A.3 BORN APPROXIMATIONS A.3.1 Perturbation Theory A.3.2 First Born Approximation for Scattering Amplitude A.3.3 Born Series using Green’s Function A.3.3.1 Zeroth Order Solution A.3.3.2 First Order Solution A.3.3.3 Second Order Solution A.3.3.4 Nth Order Solution Experimental Data: from Creighton University NIM Lab B.1 DATA: CHAPTER 2 B.1.1 Data for Fig.2.6 Bibliography
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐