图书简介
Bayesian Networks: With Examples in R, Second Edition introduces Bayesian networks using a hands-on approach. Simple yet meaningful examples illustrate each step of the modelling process and discuss side-by-side the underlying theory and its application using R code. The examples start from the simplest notions and gradually increase in complexity. In particular, this new edition contains significant new material on topics from modern machine learning practice: dynamic networks, networks with heterogeneous variables, and model validation.The first three chapters explain the whole process of Bayesian network modelling, from structure learning to parameter learning to inference. These chapters cover discrete, Gaussian, and conditional Gaussian Bayesian networks. The following two chapters delve into dynamic networks (to model temporal data) and into networks including arbitrary random variables (using Stan). The book then gives a concise but rigorous treatment of the fundamentals of Bayesian networks and offers an introduction to causal Bayesian networks. It also presents an overview of R packages and other software implementing Bayesian networks. The final chapter evaluates two real-world examples: a landmark causal protein-signaling network published in Science and a probabilistic graphical model for predicting the composition of different body parts.Covering theoretical and practical aspects of Bayesian networks, this book provides you with an introductory overview of the field. It gives you a clear, practical understanding of the key points behind this modelling approach and, at the same time, it makes you familiar with the most relevant packages used to implement real-world analyses in R. The examples covered in the book span several application fields, data-driven models and expert systems, probabilistic and causal perspectives, thus giving you a starting point to work in a variety of scenarios.
Preface to the Second Edition Preface to the First Edition 1. The Discrete Case: Multinomial Bayesian Networks Introductory Example: Train Use Survey Graphical Representation Probabilistic Representation Estimating the Parameters: Conditional Probability Tables Learning the DAG Structure: Tests and Scores Conditional Independence Tests Network Scores Using Discrete Bayesian Networks Using the DAG Structure Using the Conditional Probability Tables Exact Inference Approximate Inference Plotting Discrete Bayesian Networks Plotting DAGs Plotting Conditional Probability Distributions Further Reading 2. The Continuous Case: Gaussian Bayesian Networks Introductory Example: Crop Analysis Graphical Representation Probabilistic Representation Estimating the Parameters: Correlation Coefficients Learning the DAG Structure: Tests and Scores Conditional Independence Tests Network Scores Using Gaussian Bayesian Networks Exact Inference Approximate Inference Plotting Gaussian Bayesian Networks Plotting DAGs Plotting Conditional Probability Distributions More Properties Further Reading 3. The Mixed Case: Conditional Gaussian Bayesian Networks Introductory Example: Healthcare Costs Graphical and Probabilistic Representation Estimating the Parameters: Mixtures of Regressions Learning the DAG Structure: Tests and Scores Using Conditional Gaussian Bayesian Networks Further Reading 4. Time Series: Dynamic Bayesian Networks Introductory Example: Domotics Graphical Representation Probabilistic Representation Learning a Dynamic Bayesian Network Using Dynamic Bayesian Networks Plotting Dynamic Bayesian Networks Further Reading 5. More Complex Cases: General Bayesian Networks Introductory Example: A&E Waiting Times Graphical and Probabilistic Representation Building the Model in Stan Generating Data Exploring the Variables Estimating the Parameters in Stan Further Reading 6. Theory and Algorithms for Bayesian Networks Conditional Independence and Graphical Separation Bayesian Networks Markov Blankets Moral Graphs Bayesian Network Learning Structure Learning Constraint-based Algorithms Score-based Algorithms Hybrid Algorithms Parameter Learning Bayesian Network Inference Probabilistic Reasoning and Evidence Algorithms for Belief Updating Exact Inference Algorithms Approximate Inference Algorithms Causal Bayesian Networks Evaluating a Bayesian Network Further Reading 7. Software for Bayesian Networks An Overview of R Packages The deal Package The catnet Package The pcalg Package The abn Package Stan and BUGS Software Packages Stan: a Feature Overview Inference Based on MCMC Sampling Other Software Packages BayesiaLab Hugin GeNIe 8. Real-World Applications of Bayesian Networks Learning Protein-Signalling Networks A Gaussian Bayesian Network Discretising Gene Expressions Model Averaging Choosing the Significance Threshold Handling Interventional Data Querying the Network Predicting the Body Composition Aim of the Study Designing the Predictive Approach Assessing the Quality of a Predictor The Saturated BN Convenient BNs Looking for Candidate BNs Further Reading A Graph Theory A Graphs, Nodes and Arcs A The Structure of a Graph A Further Reading B Probability Distributions B General Features B Marginal and Conditional Distributions B Discrete Distributions B Binomial Distribution B Multinomial Distribution B Other Common Distributions B Bernoulli Distribution B Poisson Distribution B Continuous Distributions B Normal Distribution B Multivariate Normal Distribution B Other Common Distributions B Chi-square Distribution B Student’s t Distribution B Beta Distribution B Dirichlet Distribution B Conjugate Distributions B Further Reading C A Note about Bayesian Networks C Bayesian Networks and Bayesian Statistics
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐