图书简介
This book contains mechanism analysis and synthesis. In mechanism analysis, a mobility methodology is first systematically presented. This methodology, based on the author’s screw theory, proposed in 1997, of which the generality and validity was only proved recently, is a very complex issue, researched by various scientists over the last 150 years. The principle of kinematic influence coefficient and its latest developments are described. This principle is suitable for kinematic analysis of various 6-DOF and lower-mobility parallel manipulators. The singularities are classified by a new point of view, and progress in position-singularity and orientation-singularity is stated. In addition, the concept of over-determinate input is proposed and a new method of force analysis based on screw theory is presented. In mechanism synthesis, the synthesis for spatial parallel mechanisms is discussed, and the synthesis method of difficult 4-DOF and 5-DOF symmetric mechanisms, which was first put forward by the author in 2002, is introduced in detail. Besides, the three-order screw system and its space distribution of the kinematic screws for infinite possible motions of lower mobility mechanisms are both analyzed.
Part I Screw Theory.- Chapter 1 Basics of Screw Theory.- Introduction.- 1.1 Equation of a Line.- 1.2 Mutual Moment of Two Lines.- 1.3 Line Vectors and Screws.- 1.3.1 The line vector.- 1.3.2 The screw.- 1.4 Screw Algebra.- 1.4.1 Screw Sum.- 1.4.2 Product of a scalar and a screw.- 1.4.3 Reciprocal Product.- 1.5 Instantaneous Kinematics of a Rigid Body.- 1.5.1 Instantaneous Rotation.- 1.5.2 Instantaneous Translation.- 1.5.3 Instantaneous screw motion.- 1.6 Statics of a Rigid Body.- 1.6.1 A Force Acting on a Body.- 1.6.2 A Couple Acting on a Body.- 1.6.3 A Twist Acting on a Body.- References.- Chapter 2 Dependency and Reciprocity of Screws.- 2.1 Concept of Screw Systems.- 2.2 Second-order screw system.- 2.2.1 Linear combination of two screws.- 2.2.2 Special two-screw system.- 2.3 Third-order screw system.- 2.3.1 Principal screws.- 2.3.2 Special three-screw systems.- 2.4 Grassmann line geometry.- 2.5 Screw dependency in different geometrical spaces.- 2.5.1 Basic concepts.- 2.5.2 Different geometrical spaces.- 2.6 Reciprocal screws.- 2.6.1 Concept of a reciprocal screw.- 2.6.2 Dualism in the physical meaning of reciprocal screws.- 2.7 Reciprocal screw system.- 2.8 Reciprocal screw and constrained motion.- 2.8.1 Three skew lines in space.- 2.8.2 Three lines parallel to a plane without a common normal.- 2.8.3 Three non-concurrent coplanar lines.- 2.8.4 Three coplanar and concurrent line vectors.- 2.8.5 Three line vectors concurrent in space.- 2.8.6 Three line vectors parallel in space.- References.- Chapter 3 Mobility Analysis (Part 1).- 3.1 The Concept and Definition of Mobility.- 3.2 Mobility Open Issue.- 3.2.1 Grübler-Kutzbach Criterion.- 3.2.2 Mobility Open Issue.- 3.3 Mobility Principle based on Reciprocal Screw.- 3.3.1 Mechanism Can Be Expressed as a Screw System.- 3.3.2. Development of Our Unified Mobility Principle.- 3.3.3 The Modified G-K Formulas.- 3.4 Constraint Analysis based on Reciprocal Screw.- 3.4.1 The Common Constraint.- 3.4.2 Parallel Constraint.- 3.4.3. Over-constraint.- 3.4.4. The Generalized Kinematic Pair.- 3.5 Mobility Property Analyses.- 3.5.1 Translation and Rotation.- 3.5.2 Rotational Axis.- 3.5.3 Instantaneous Mobility and Full-cycle Mobility.- 3.5.4 Full-field Mobility.- 3.5.5 Parasitic Motion.- 3.5.6 Self-motion.- References.- Chapter 4 Mobility Analysis Part 2.- 4.1 Mobility analysis of simple mechanisms.- 4.1.1 Open Chain linkage.- 4.1.2 Roberval mechanism.- 4.1.3 RUPUR mechanism.- 4.1.4 Hervé 6.bar mechanism.- 4.1.5 Spatial 4P mechanism.- 4.1.6 Delassus H-H-H-H Mechanism.- 4.1.7 Hervé’s CCC Mechanism.- 4.2 Mobility Analysis of classical mechanisms.- 4.2.1 Bennett mechanism.- 4.2.2 Five-bar Goldberg Linkage.- 4.2.3 Six-bar Goldberg linkage.- 4.2.4 Myard linkage with symmetrical plane.- 4.2.5 Bricard with symmetrical plane.- 4.2.6 Altmann Abb.34 Mechanism.- 4.2.7 Altmann six-bar linkage.- 4.2.8 Waldron six-bar linkage.- 4.3 Mobility Analysis of Modern Parallel Mechanisms.- 4.3.1 4-DOF 4-URU Mechanism.- 4.3.2 3-CRR mechanism.- 4.3.3 Zlatanov and Gosselin’s Mechanism.- 4.3.4 Carricato’s mechanism.- 4.3.5 Delta mechanism.- 4.3.6 H4 manipulator.- 4.3.7 Yang’s mechanism.- 4.4 Mobility analysis of Hoberman Switch-pitch ball.- 4.4.1 Structure analysis.- 4.4.2 Three-link chain.- 4.4.3 Eight-link loop.- 4.4.4 Double loop.- 4.4.5 Three-loop chain.- 4.4.6 The whole mechanism.- 4.5 Six-hole cubiform mechanism.- 4.5.1 Double-hole linkage.- 4.5.2 Four-hole linkage.- 4.5.3 five-hole linkage.- 4.5.4 The whole six-hole mechanism.- References.- Chapter 5 Kinematic Influence Coefficient and Kinematics Analysis.- 5.1 Concept of KIC.- 5.2 KIC and Kinematic Analysis of Serial Chains.- 5.2.1 Position Analysis.- 5.2.2 First-Order KIC.- 5.2.3 Second-Order KIC.- 5.3 Kinematic Analysis of Parallel Mechanism.- 5.3.1 First-Order KIC and Mechanism Velocity Analysis.- 5.3.2 Second-Order KIC and Mechanism Accelerations.- 5.4 Virtual Mechanism Principle of Lower-Mobility Parallel Mechanisms.- 5.4.1 Virtual Mechanism Principle.- 5.4.2 Kinematic Analysis Based on Virtual Mechanism Principle.- Fig. 5.7 A virtual limb.- References.- Chapter 6 Full-Scale Feasible Instantaneous Screw Motion.- 6.1. Introduction.- 6.2. Determination of Principal Screws.- 6.2.1 The Representation of pitch and axes.- 6.2.2 Principal screws of a third-order screw system.- 6.3. Full-Scale Feasible Instantaneous Screws of the 3-RPS mechanism.- 6.3.1. Virtual Mechanism and Jacobian Matrix.- 6.3.2 Upper platform is parallel to the base.- 6.3.3 The upper platform rotates by an angle about line a2a3.- 6.3.4 General configuration of the 3-RPS mechanism.- 6.4. Full-Scale Feasible Instantaneous Screw of a 3-UPU mechanism.- 6.4.1 Mobility analysis.- 6.4.2 First-order influence matrices and kinematic analysis.- 6.4.3. Initial configuration.- 6.4.4 The second configuration.- 6.5 Full-Scale Feasible Instantaneous Screw of a 3-RPS Pyramid mechanism.- 6.5.1 First-order influence coefficient matrix (Jacobian matrix).- 6.5.2 Principal screws and full-scale feasible motions.- 6.6 A 3-DOF Rotational Parallel Manipulator without Intersecting Axes.- 6.6.1 An Open Problem of the PMs with Intersecting Axes.- 6.6.2 A 3-D revolute mechanism without intersecting axes.- 6.3.3 The Orientation Workspace.- 6.6.4 Examples.- 6.6.5 Discussions about the differences between the SPMs and the 3-RPS Cubic PM.- References.- Chapter 7 special configuration of Mechanisms.- 7.1. Introduction.- 7.2. Classification of the Special Configuration.- 7.2.1 Singular kinematics classification.- 7.2.2 Classification of the Singularity via a Linear Complex.- 7.3. Singular Kinematic Principle.- 7.4. Singularity Loci of 3/6-Stewart For special orientations.- 7.4.1 Typical Singularity Structures of 3/6-SP.- 7.4.2 Hyperbolic Singularity Equation Derived in an Oblique Plane.- 7.4.3 Singularity Equation Derived in 3D Space.- 7.4.4 Singularity Distribution in 3D Space.- 7.5. Structure and Property of THE Singularity Loci of 3/6-Stewart for General Orientations ( ).- 7.5.1. Singularity Equation Based on Theorem 3 for General Orientations.- 7.5.2 Singularity Analysis Using Singularity-Equivalent-Mechanism.- 7.5.3. General Case.- 7.5.4 Five Special Cases of the Singularity Equation.- 7.6. Structure and Property of the Singularity Loci of the 6/6-Stewart.- 7.6.1 Jacobian Matrix.- 7.6.2 Singularity Analysis in 3D Space.- 7.6.3 Singularity Analysis in Parallel Principal-Sections.- 7.7 Singularity of a 3-RPS Manipulator.- 7.7.1 3-RPS Mechanism.- 7.7.2. Singularity and Its spatial distribution.- 7.7.3. Geometry and Constraint Analysis.- References.- Appendix A.- Chapter 8 Dynamic Problems of Parallel Mechanisms.- 8.1 Over-determine inputs.- 8.1.1 Influence coefficient matrices and inertia forces.- 8.1.2 The Accordant Equation for over-determinate Inputs.- 8.1.3 Optimization of Over-Determinate Input.- 8.1.4 The Weight Distribution of the input Torques.- 8.2 Kinetostatic Analysis of 4-UPU Parallel Mechanisms.- 8.2.1 Main-pair reaction Forces.- 8.2.2 Numerical Example.- 8.3 Kinetostatic Analysis of 4-R(CRR) Parallel Manipulator.- 8.3.1 4-R(CRR) Parallel Manipulator.- 8.3.2. Main-pair reaction.- 8.3.3 Active moments and reactions of other pairs in limbs.- 8.3.4 Numerical example.- 8.3.5. Discussion.- References.- Chapter 9 Constraint screw-based method for type synthesis.- 9.1 Description of constraints acting on a rigid body.- 9.2 Limb twist and limb constraint systems.- 9.2.1 Limb twist system.- 9.2.2 Limb constraint system.- 9.3 Platform twist and platform constraint systems.- 9.3.1 Platform twist system.- 9.3.2 Platform constraint system and classification of lower-mobility PMs.- 9. 4 Constraint-screw based synthesis method.- 9.4.1 Procedure of the constraint-screw based synthesis method.- 9.4.2 Generation of different architectures of PM.- 9.4.3 Discrimination for instantaneous PMs.- 9.5 Examples.- 9.5.1 Type synthesis of a 3R2T 5-DOF PM.- 9. 5. 2 Type synthesis of 2R3T 5-DOF PMs.- 9. 5. 3 Type synthesis of 1R3T 4-DOF PMs.- 9. 5. 4 Type synthesis of 3R1T 4-DOF PMs.- 9. 5. 6 Type synthesis of a 2R1T 3-DOF PM.- 9. 5. 7 Type synthesis of a 3T 3-DOF PM.- 9. 5. 8 Type synthesis of a 3R 3-DOF PM.- 9. 5. 9 Type synthesis of a 1R2T 3-DOF PM.- References.- Chapter 10 Digital Topology Theory of Kinematic Chains and Atlas Database.- 10-1 Topology Modeling of Mechanisms.- 10.1.1 Modeling of simple joint kinematic chains.- 10.1.2 Modeling of multiple joint kinematic chains.- 10.1.3 Modeling of geared (cam) kinematic chains.- 10.2 Loop operation algebra of kinematic chains.- 10.2.1 Loop and its representation.- 10.2.2 “ ” Operation of Loops.- 10.2.3 “ ” Operation of Loops.- 10.2.5 Loop analysis.- 10.2.6 Edge-based operations of loops.- 10.3 Isomorphism identification.- 10.3.1 Perimeter topological graph.- 10.3.2 Canonical perimeter topological graph.- 10.3.3 Characteristic perimeter topological graph.- 10.3.4 Examples of isomorphism identification.- 10.3.5 Analysis of computational complexity.- 10.4 Detection of rigid sub-chains.- 10.5 Digital atlas database and synthesis.- References.- Index.
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐