图书简介
This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory.The book’s chief features are as follows: It highlights how deep neural networks can be used to address new questions and protocols, and to tackle current challenges in medical image computing; presents a comprehensive review of the latest research and literature; and describes a range of different methods that employ deep learning for object or landmark detection tasks in 2D and 3D medical imaging. In addition, the book examines a broad selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to text and image deep embedding for a large-scale chest x-ray image database; and discusses how deep learning relational graphs can be used to organize a sizable collection of radiology findings from real clinical practice, allowing semantic similarity-based retrieval.The intended reader of this edited book is a professional engineer, scientist or a graduate student who is able to comprehend general concepts of image processing, computer vision and medical image analysis. They can apply computer science and mathematical principles into problem solving practices. It may be necessary to have a certain level of familiarity with a number of more advanced subjects: image formation and enhancement, image understanding, visual recognition in medical applications, statistical learning, deep neural networks, structured prediction and image segmentation.
Chapter 1. Clinical Report Guided Multi-Sieving Deep Learning for Retinal Microaneurysm Detection.- Chapter 2. Optic Disc and Cup Segmentation Based on Multi-label Deep Network for Fundus Glaucoma Screening.- Chapter 3. Thoracic Disease Identification and Localization with Limited Supervision.- Chapter 4. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases.- Chapter 5. TieNet: Text-Image Embedding Network for Common Thorax Disease Classification and Reporting in Chest X-rays.- Chapter 6. Deep Lesion Graph in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-scale Lesion Database.- Chapter 7. Deep Reinforcement Learning based Attention to Detect Breast Lesions from DCE-MRI.- Chapter 8. Deep Convolutional Hashing for Low Dimensional Binary Embedding of Histopathological Images.- Chapter 9. Pancreas Segmentation in CT and MRI Images via Domain Specific Network Designing and Recurrent Neural Contextual Learning.- Chapter 10. Spatial Clockwork Recurrent Neural Network for Muscle Perimysium Segmentation.- Chapter 11. Pancreas.- Chapter 12. Multi-Organ.- Chapter 13. Convolutional Invasion and Expansion Networks for Tumor Growth Prediction.- Chapter 14. Cross-Modality Synthesis in Magnetic Resonance Imaging.- Chapter 15. Image Quality Assessment for Population Cardiac MRI.- Chapter 16. Low Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss.- Chapter 17. Unsupervised Cross-Modality Domain Adaptation of ConvNets for Biomedical Image Segmentations with Adversarial Loss.- Chapter 18. Automatic Vertebra Labeling in Large-Scale Medical Images using Deep Image-to-Image Network with Message Passing and Sparsity Regularization.- Chapter 19. 3D Anisotropic Hybrid Network: Transferring Convolutional Features from 2D Images to 3D Anisotropic Volumes.- Chapter 20. Multi-Agent Learning for Robust Image Registration.- Chapter 21. Deep Learning in Magnetic Resonance Imaging of Cardiac Function.- Chapter 22. Automatic Vertebra Labeling in Large-Scale Medical Images using Deep Image-to-Image Network with Message Passing and Sparsity Regularization.- Chapter 23. Deep Learning on Functional Connectivity of Brain: Are We There Yet?.
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐