图书简介
This book introduces and explains the mathematics behind convex and linear optimization, focusing on developing insights in problem complexity, modelling and algorithms. Although many introductory books pay little attention to nonlinear optimization, convex problems deserve attention because of their many applications and the fast algorithms that have been developed to solve them. The main algorithms used in linear, integer, and convex optimization are presented in a mathematical style. The emphasis is on what makes a class of problems practically solvable and developing insight into algorithms geometrically. Principles of algorithm design are explained, making it accessible to those with no background in algorithms. The important issue of speed of algorithms is discussed and addressed theoretically where appropriate. A breadth of recent applications are presented to demonstrate the many areas in which optimization is successfully used. The process of formulating optimization problems is included throughout, both to develop the ability to formulate large problems and to appreciate that some formulations are more tractable.
1 Introduction to Optimization Modeling 1 1.1 Who Uses Optimization? 1 1.2 Sending Aid to a Disaster 4 The Modeling Process 11 1.3 Optimization Terminology 14 1.4 Classes of Mathematical Programs 17 Linear Programs 18 Integer Programs 21 Nonlinear Programs 24 Problems 25 2 Linear Programming Models 29 2.1 Resource Allocation 29 Production Process Models 34 2.2 Purchasing and Blending 35 Online Advertising Markets 38 Blending Problems 40 2.3 Workforce Scheduling 44 2.4 Multiperiod Problems 46 Multiperiod Financial Models 50 2.5 Modeling Constraints 52 2.6 Network Flow 55 Transportation Problems 55 Minimum Cost Network Flow 61 Shortest Path Problems 65 Problems 68 3 Linear Programming Formulations 75 3.1 Changing Form 75 Slack Variables 76 3.2 Linearization of Piece-wise Linear Functions 79 Linearization without Adding Constraints 83 Goal Programming 85 3.3 Dynamic Programming 86 Problems 93 4 Integer Programming Models 101 4.1 Quantitative Variables and Fixed Costs 102 Fixed Costs 103 4.2 Set Covering 105 4.3 Logical Constraints and Piecewise Linear Functions 110 Job Shop Scheduling 112 Linearization of Piecewise Linear Objectives 115 4.4 Additional Applications 117 Supermarket Markdowns 117 Warehouse Location and Transshipment 120 Locating Disaster Recovery Centers 122 4.5 Traveling Salesperson and Cutting Stock Problems 125 Cutting Stock Problem 129 Problems 131 5 Iterative Search Algorithms 141 5.1 Iterative Search and Constructive Algorithms 143 Constructive Algorithms 145 Exact and Heuristic Algorithms 148 Traveling Salesperson Heuristics 150 5.2 Improving Directions and Optimality 153 Feasible Directions and Step Size 156 Optimality Conditions 158 5.3 Computational Complexity and Correctness 163 Computational Complexity 166 Problems 169 6 Convexity 175 6.1 Convex Sets 177 6.2 Convex and Concave Functions 184 Combining Convex Functions 187 Problems 190 7 Geometry and Algebra of LPs 193 7.1 Extreme Points and Basic Feasible Solutions 194 Degeneracy 198 7.2 Optimality of Extreme Points 199 7.3 Linear Programs in Canonical Form 204 Basic Solutions in Canonical Form 206 7.4 Optimality Conditions 211 7.5 Optimality for General Polyhedra 214 Representation of Polyhedra 216 Problems 218 8 Duality Theory 223 8.1 Dual of a Linear Program 224 8.2 Duality Theorems 231 8.3 Complementary Slackness 238 8.4 Lagrangian Duality 241 8.5 Farkas’ Lemma and Optimality 245 Problems 250 9 Simplex Method 255 9.1 Simplex Method From a Known Feasible Solution 257 Finding an Improving Direction 258 Determining the Step Size 259 Updating the Basis 261 Simplex Method 262 A Comment on Names 269 9.2 Degeneracy and Correctness 269 9.3 Finding an Initial Feasible Solution 274 Artificial Variables in the Basis 275 Two-Phase Simplex Method 275 9.4 Computational Strategies and Speed 284 Number of Iterations Required 285 Revised Simplex Method 287 Simplex Tableaus 290 Other Implementation Issues 295 Problems 296 10 Sensitivity Analysis 301 10.1 Graphical Sensitivity Analysis 302 Changes in the Right-hand Side 304 Changes in the Objective Function 308 10.2 Shadow Prices and Reduced Costs 308 Changes in the Right-hand Side 309 Sign of Shadow Prices 311 Changes in the Objective Function 312 Sensitivity Analysis Examples 315 Degeneracy 322 Parametric Programming 324 10.3 Economic Interpretation of the Dual 325 Problems 329 11 Algorithmic Applications of Duality 333 11.1 Dual Simplex Method 335 11.2 Network Simplex Method 348 Node-arc Incidence Matrix 351 Tree Solutions 352 Network Simplex 355 Transportation Problem 360 11.3 Primal-dual Interior Point Method 366 Newton’s Method 369 Step Size 371 Choosing the Complementary Slackness Parameter 372 Barrier Function Interpretation 378 Problems 383 12 Integer Programming Theory 389 12.1 Linear Programming Relaxations 390 12.2 Strong Formulations 392 Aggregate Constraints 397 Bounding Integer Variables 399 12.3 Unimodular Matrices 400 Network Flow Problems 402 Unimodularity 405 Problems 406 13 Integer Programming Algorithms 411 13.1 Branch and Bound Methods 412 Branching and Trees 414 Choosing a Subproblem 415 Mixed Integer Programs 423 Integer Lagrangian Relaxations 423 13.2 Cutting Plane Methods 426 Gomory Cutting Plane Method 428 Generating Valid Inequalities by Rounding 432 Valid Inequalities for Binary Variables 436 Problems 440 14 Convex Programming: Optimality Conditions 445 14.1 KKT Optimality Conditions 446 Equality Constraints 447 Inequality Constraints 449 Convexity 452 KKT Conditions with Nonnegativity Constraints 455 Examples 457 14.2 Lagrangian Duality 461 Geometry of Primal and Dual Functions 463 Sensitivity Analysis 467 Problems 470 15 Convex Programming: Algorithms 477 15.1 Convex Optimization Models 481 15.2 Separable Programs 487 15.3 Unconstrained Optimization 489 Gradient Search 490 Newton’s Method 491 Quasi-Newton Methods 494 15.4 Quadratic Programming 496 15.5 Primal-dual Interior Point Method 498 Barrier Problem 501 The Newton Step 502 Step Size and Slackness Parameter 504 Primal-dual Interior Point Algorithm 506 Problems 511 A Linear Algebra and Calculus Review 515 A.1 Sets and Other Notation 515 A.2 Matrix and Vector Notation 516 A.3 Matrix Operations 519 A.4 Matrix Inverses 521 A.5 Systems of Linear Equations 523 A.6 Linear Independence and Rank 526 A.7 Quadratic Forms and Eigenvalues 528 A.8 Derivatives and Convexity 531
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐