图书简介
The study of exoplanetary atmospheres—that is, of planets orbiting stars beyond our solar system—may be our best hope for discovering life elsewhere in the universe. This dynamic, interdisciplinary field requires practitioners to apply knowledge from atmospheric and climate science, astronomy and astrophysics, chemistry, geology and geophysics, planetary science, and even biology. Exoplanetary Atmospheres provides an essential introduction to the theoretical foundations of this cutting-edge new science.
Exoplanetary Atmospheres covers the physics of radiation, fluid dynamics, atmospheric chemistry, and atmospheric escape. It draws on simple analytical models to aid learning, and features a wealth of problem sets, some of which are open-ended. This authoritative and accessible graduate textbook uses a coherent and self-consistent set of notation and definitions throughout, and also includes appendixes containing useful formulae in thermodynamics and vector calculus as well as selected Python scripts.
Exoplanetary Atmospheres prepares PhD students for research careers in the field, and is ideal for self-study as well as for use in a course setting.
- The first graduate textbook on the theory of exoplanetary atmospheres
- Unifies knowledge from atmospheric and climate science, astronomy and astrophysics, chemistry, planetary science, and more
- Covers radiative transfer, fluid dynamics, atmospheric chemistry, and atmospheric escape
- Provides simple analytical models and a wealth of problem sets
- Includes appendixes on thermodynamics, vector calculus, tabulated Gibbs free energies, and Python scripts
- Solutions manual (available only to professors)
Foreword by Sara Seager xi Preface xiii 1 Observations of Exoplanetary Atmospheres: A Theorist’s Review of Techniques in Astronomy 1 1.1 The birth of exoplanetary science 1 1.2 Transits and occultations 2 1.3 Radial velocity measurements 8 1.4 Direct imaging 11 1.5 Gravitational microlensing 12 1.6 Future missions and telescopes 12 2 Introduction to Radiative Transfer 14 2.1 The optical depth: The most fundamental quantity in radiative transfer 14 2.2 Basic quantities in radiative transfer 16 2.3 The radiative transfer equation 20 2.4 Simple solutions of the radiative transfer equation 20 2.5 A practical checklist for radiative transfer calculations 23 2.6 Clouds 24 2.7 Atmospheric retrieval 27 2.8 Problem sets 31 3 The Two-Stream Approximation of Radiative Transfer 35 3.1 What is the two-stream approximation? 35 3.2 The radiative transfer equation and its moments 36 3.3 Two-stream solutions with isotropic scattering 39 3.4 The scattering phase function 45 3.5 Two-stream solutions with non-isotropic scattering 46 3.6 Different closures of the two-stream solutions 49 3.7 The diffusion approximation for radiative transfer 51 3.8 Problem sets 53 4 Temperature-Pressure Profiles 56 4.1 A myriad of atmospheric effects: Greenhouse warming and antigreenhouse cooling 56 4.2 The dual-band or double-gray approximation 57 4.3 The radiative transfer equation and the scattering parameter 58 4.4 Treatment of shortwave radiation 60 4.5 Treatment of longwave radiation 64 4.6 Assembling the pieces: Deriving the general solution 65 4.7 Exploration of different atmospheric effects 67 4.8 Milne’s solution and the convective adiabat 71 4.9 Problem sets 72 5 Atmospheric Opacities: How to Use a Line List 74 5.1 From spectroscopic line lists to synthetic spectra 74 5.2 The Voigt profile 76 5.3 The quantum physics of spectral lines 78 5.4 The million- to billion-line radiative transfer challenge 81 5.5 Different types of mean opacities 88 5.6 Problem sets 89 6 Introduction to Atmospheric Chemistry 92 6.1 Why is atmospheric chemistry important? 92 6.2 Basic quantities: Gibbs free energy, equilibrium constant, rate coefficients 93 6.3 Chemical kinetics: Treating chemistry as a set of mass conservation equations 101 6.4 Self-consistent atmospheric chemistry, radiation and dynamics: A formidable computational challenge 106 6.5 Problem sets 107 7 A Hierarchy of Atmospheric Chemistries 110 7.1 A hierarchy of models for understanding atmospheric chemistry 110 7.2 Equilibrium chemistry with only hydrogen 110 7.3 Equilibrium C-H-O chemistry: Forming methane, water, carbon monoxide and acetylene 113 7.4 Equilibrium C-H-O chemistry: Adding carbon dioxide 115 7.5 Equilibrium C-H-O chemistry: Adding ethylene 121 7.6 Problem sets 122 8 Introduction to Fluid Dynamics 123 8.1 Why is the study of fluids relevant to exoplanetary atmospheres? 123 8.2 What exactly is a fluid? 124 8.3 The governing equations of fluid dynamics 124 8.4 Potential temperature and potential vorticity 128 8.5 Dimensionless fluid numbers 130 8.6 Problem sets 132 9 Deriving the Governing Equations of Fluid Dynamics 135 9.1 Preamble 135 9.2 The mass continuity equation (mass conservation) 135 9.3 The Navier-Stokes equation (momentum conservation) 136 9.4 The thermodynamic equation (energy conservation) 138 9.5 The conservation of potential vorticity 139 9.6 Various approximate forms of the governing equations of fluid dynamics 143 9.7 Magnetohydrodynamics 147 9.8 Problem sets 151 10 The Shallow Water System: A Fluid Dynamics Lab on Paper 155 10.1 A versatile fluid dynamics laboratory on paper 155 10.2 Deriving the shallow water equations 156 10.3 Gravity as the restoring force: The generation of gravity waves 158 10.4 Friction in an atmosphere: Molecular viscosity and Rayleigh drag 160 10.5 Forcing the atmosphere: Stellar irradiation 162 10.6 Like plucking a string: Alfv’en waves 163 10.7 Rotation: The generation of Poincar’e and Rossby waves 165 10.8 General coupling of physical effects 167 10.9 Shallow atmospheres as quantum harmonic oscillators 168 10.10 Shallow water systems and exoplanetary atmospheres 174 10.11 Problem sets 175 11 The de Laval Nozzle and Shocks 182 11.1 What is the de Laval nozzle? 182 11.2 What are shocks? 184 11.3 What does the de Laval nozzle teach us about shocks? 187 11.4 Applications to, and consequences for, exoplanetary atmospheres 191 11.5 Problem sets 192 12 Convection, Turbulence and Fluid Instabilities 196 12.1 Fluid motion induced by physically unstable configurations 196 12.2 Hot air rises and cold air sinks: Schwarzschild’s criterion for convective stability 196 12.3 A simplified \"theory\" of convection: Mixing length theory 199 12.4 Implementing convection in numerical calculations: Convective adjustment schemes 200 12.5 A simple \"theory\" of turbulence: The scaling laws of Kolmogorov 202 12.6 Water over oil: The Rayleigh-Taylor instability 204 12.7 Shearing fluids: The Kelvin-Helmholtz instability 206 12.8 Weather at mid-latitudes: The baroclinic instability 207 12.9 Problem sets 209 13 Atmospheric Escape 211 13.1 The Knudsen number and Jeans parameter 211 13.2 Jeans escape 213 13.3 The classical Parker wind solution 213 13.4 Non-isothermal Parker winds: Using the nozzle solutions 216 13.5 Detailed processes: Photo-ionization, radiative cooling and nonthermal mechanisms 218 13.6 Problem sets 221 14 Outstanding Problems of Exoplanetary Atmospheres 223 Appendix A: Summary of Standard Notation 228 Appendix B: Essential Formulae of Vector Calculus 233 Appendix C: Essential Formulae of Thermodynamics 235 Appendix D: Gibbs Free Energies of Various Molecules and Reactions 237 Appendix E: Python Scripts for Generating Figures 240 Bibliography 250 Index 271
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐