图书简介
Featuring contributions by noted experts in the field of electronic and optoelectronic materials and photonics, this book looks at the optical properties of materials as well as their physical processes and various classes. Taking a semi-quantitative approach to the subject, it presents a summary of the basic concepts, reviews recent developments in the study of optical properties of materials and offers many examples and applications. Optical Properties of Materials and Their Applications, 2nd Edition starts by identifying the processes that should be described in detail and follows with the relevant classes of materials. In addition to featuring four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry, the book covers: optical properties of disordered condensed matter and glasses; concept of excitons; photoluminescence, photoinduced changes, and electroluminescence in noncrystalline semiconductors; and photoinduced bond breaking and volume change in chalcogenide glasses. Also included are chapters on: nonlinear optical properties of photonic glasses; kinetics of the persistent photoconductivity in crystalline III-V semiconductors; and transparent white OLEDs. In addition, readers will learn about excitonic processes in quantum wells; optoelectronic properties and applications of quantum dots; and more. Covers all of the fundamentals and applications of optical properties of materials Includes theory, experimental techniques, and current and developing applications Includes four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry Appropriate for materials scientists, chemists, physicists and electrical engineers involved in development of electronic materials Written by internationally respected professionals working in physics and electrical engineering departments and government laboratories
List of Contributors xv Series Preface xvii Preface xix 1 Fundamental Optical Properties of Materials I 1 S.O. Kasap, W.C. Tan, Jai Singh, and Asim K. Ray 1.1 Introduction 1 1.2 Optical Constants n and K 2 1.2.1 Refractive Index and Extinction Coefficient 2 1.2.2 n and K, and Kramers-Kronig Relations 5 1.3 Refractive Index and Dispersion 7 1.3.1 Cauchy Dispersion Relation 7 1.3.2 Sellmeier Equation 8 1.3.3 Refractive Index of Semiconductors 10 1.3.3.1 Refractive Index of Crystalline Semiconductors 10 1.3.3.2 Bandgap and Temperature Dependence 11 1.3.4 Refractive Index of Glasses 11 1.3.5 Wemple-DiDomenico Dispersion Relation 14 1.3.6 Group Index 15 1.4 The Swanepoel Technique: Measurement of n and ? for Thin Films on Substrates 16 1.4.1 Uniform Thickness Films 16 1.4.2 Thin Films with Non-uniform Thickness 22 1.5 Transmittance and Reflectance of a Partially Transparent Plate 25 1.6 Optical Properties and Diffuse Reflection: Schuster-Kubelka-Munk Theory 27 1.7 Conclusions 31 Acknowledgments 31 References 32 2 Fundamental Optical Properties of Materials II 37 S.O. Kasap, K. Koughia, Jai Singh, Harry E. Ruda, and Asim K. Ray 2.1 Introduction 37 2.2 Lattice or Reststrahlen Absorption and Infrared Reflection 40 2.3 Free Carrier Absorption (FCA) 42 2.4 Band-to-Band or Fundamental Absorption (Crystalline Solids) 45 2.5 Impurity Absorption and Rare-Earth Ions 48 2.6 Effect of External Fields 54 2.6.1 Electro-Optic Effects 54 2.6.2 Electro-Absorption and Franz-Keldysh Effect 55 2.6.3 Faraday Effect 56 2.7 Effective Medium Approximations 58 2.8 Conclusions 61 Acknowledgments 61 References 62 3 Optical Properties of Disordered Condensed Matter 67 Koichi Shimakawa, Jai Singh, and S.K. O’Leary 3.1 Introduction 67 3.2 Fundamental Optical Absorption (Experimental) 69 3.2.1 Amorphous Chalcogenides 69 3.2.2 Hydrogenated Nano-Crystalline Silicon (nc-Si:H) 72 3.3 Absorption Coefficient (Theory) 74 3.4 Compositional Variation of the Optical Bandgap 79 3.4.1 In Amorphous Chalcogenides 79 3.5 Conclusions 80 References 80 4 Optical Properties of Glasses 83 Andrew Edgar 4.1 Introduction 83 4.2 The Refractive Index 84 4.3 Glass Interfaces 86 4.4 Dispersion 88 4.5 Sensitivity of the Refractive Index 90 4.5.1 Temperature Dependence 90 4.5.2 Stress Dependence 91 4.5.3 Magnetic Field Dependence-The Faraday Effect 92 4.5.4 Chemical Perturbations-Molar Refractivity 94 4.6 Glass Color 95 4.6.1 Coloration by Colloidal Metals and Semiconductors 95 4.6.2 Optical Absorption in Rare-Earth-Doped Glass 96 4.6.3 Absorption by 3d Metal Ions 99 4.7 Fluorescence in Rare-Earth-Doped Glass 102 4.8 Glasses for Fiber Optics 104 4.9 Refractive Index Engineering 106 4.10 Glass and Glass-Fiber Lasers and Amplifiers 109 4.11 Valence Change Glasses 111 4.12 Transparent Glass Ceramics 114 4.12.1 Introduction 114 4.12.2 Theoretical Basis for Transparency 116 4.12.3 Rare-Earth-Doped Transparent Glass Ceramics for Active Photonics 120 4.12.4 Ferroelectric Transparent Glass Ceramics 121 4.12.5 Transparent Glass Ceramics for X-ray Storage Phosphors 121 4.13 Conclusions 124 References 124 5 Concept of Excitons 129 Jai Singh, Harry E. Ruda, M.R. Narayan, and D. Ompong 5.1 Introduction 129 5.2 Excitons in Crystalline Solids 130 5.2.1 Excitonic Absorption in Crystalline Solids 133 5.3 Excitons in Amorphous Semiconductors 135 5.3.1 Excitonic Absorption in Amorphous Solids 137 5.4 Excitons in Organic Semiconductors 139 5.4.1 Photoexcitation and Formation of Excitons 140 5.4.1.1 Photoexcitation of Singlet Excitons Due to Exciton-Photon Interaction 141 5.4.1.2 Excitation of Triplet Excitons 142 5.4.2 Exciton Up-Conversion 147 5.4.3 Exciton Dissociation 148 5.4.3.1 Conversion from Frenkel to CT Excitons 151 5.4.3.2 Dissociation of CT Excitons 152 5.5 Conclusions 153 References 154 6 Photoluminescence 157 Takeshi Aoki 6.1 Introduction 157 6.2 Fundamental Aspects of Photoluminescence (PL) in Materials 158 6.2.1 Intrinsic Photoluminescence 159 6.2.2 Extrinsic Photoluminescence 160 6.2.3 Up-Conversion Photoluminescence (UCPL) 162 6.2.4 Other Related Optical Transitions 163 6.3 Experimental Aspects 164 6.3.1 Static PL Spectroscopy 164 6.3.2 Photoluminescence Excitation Spectroscopy (PLE) and Photoluminescence Absorption Spectroscopy (PLAS) 167 6.3.3 Time Resolved Spectroscopy (TRS) 168 6.3.4 Time-Correlated Single Photon Counting (TCSPC) 171 6.3.5 Frequency-Resolved Spectroscopy (FRS) 172 6.3.6 Quadrature Frequency Resolved Spectroscopy (QFRS) 173 6.4 Photoluminescence Lifetime Spectroscopy of Amorphous Semiconductors by QFRS Technique 175 6.4.1 Overview 175 6.4.2 Dual-Phase Double Lock-in (DPDL) QFRS Technique 176 6.4.3 Exploring Broad PL Lifetime Distribution in a-Si:H by Wideband QFRS 178 6.4.3.1 Effects of Excitation Intensity, Excitation, and Emission Energies 179 6.4.3.2 Temperature Dependence 184 6.4.3.3 Effect of Electric and Magnetic Fields 185 6.4.4 Residual PL Decay of a-Si:H 189 6.5 QFRS on Up-Conversion Photoluminescence (UCPL) of RE-Doped Materials 192 6.6 Conclusions 197 Acknowledgments 198 References 198 7 Photoluminescence, Photoinduced Changes, and Electroluminescence in Noncrystalline Semiconductors 203 Jai Singh 7.1 Introduction 203 7.2 Photoluminescence 205 7.2.1 Radiative Recombination Operator and Transition Matrix Element 206 7.2.2 Rates of Spontaneous Emission 211 7.2.2.1 At Nonthermal Equilibrium 212 7.2.2.2 At Thermal Equilibrium 214 7.2.2.3 Determining E0 215 7.2.3 Results of Spontaneous Emission and Radiative Lifetime 216 7.2.4 Temperature Dependence of PL 222 7.2.5 Excitonic Concept 223 7.3 Photoinduced Changes in Amorphous Chalcogenides 225 7.3.1 Effect of Photo-Excitation and Phonon Interaction 226 7.3.2 Excitation of a Single Electron-Hole Pair 228 7.3.3 Pairing of Like Excited Charge Carriers 229 7.4 Radiative Recombination of Excitons in Organic Semiconductors 232 7.4.1 Rate of Fluorescence 233 7.4.2 Rate of Phosphorescence 233 7.4.3 Organic Light Emitting Diodes (OLEDs) 234 7.4.3.1 Second- and Third-Generation OLEDs: TADF 235 7.5 Conclusions 236 Acknowledgments 236 References 237 8 Photoinduced Bond Breaking and Volume Change in Chalcogenide Glasses 241 Sandor Kugler, Rozalia Lukacs, and Koichi Shimakawa 8.1 Introduction 241 8.2 Atomic-Scale Computer Simulations of Photoinduced Volume Changes 243 8.3 Effect of Illumination 244 8.4 Kinetics of Volume Change 245 8.4.1 a-Se 245 8.4.2 a-As2Se3 246 8.5 Additional Remarks 248 8.6 Conclusions 249 References 249 9 Properties and Applications of Photonic Crystals 251 Harry E. Ruda and Naomi Matsuura 9.1 Introduction 251 9.2 PC Overview 252 9.2.1 Introduction to PCs 252 9.2.2 Nanoengineering of PC Architectures 253 9.2.3 Materials Selection for PCs 255 9.3 Tunable PCs 255 9.3.1 Tuning PC Response by Changing the Refractive Index of Constituent Materials 256 9.3.1.1 PC Refractive Index Tuning Using Light 256 9.3.1.2 PC Refractive Index Tuning Using an Applied Electric Field 256 9.3.1.3 Refractive Index Tuning of Infiltrated PCs 257 9.3.1.4 PC Refractive Index Tuning by Altering the Concentration of Free Carriers (Using Electric Field or Temperature) in Semiconductor-Based PCs 257 9.3.2 Tuning PC Response by Altering the Physical Structure of the PC 258 9.3.2.1 Tuning PC Response Using Temperature 258 9.3.2.2 Tuning PC Response Using Magnetism 258 9.3.2.3 Tuning PC Response Using Strain 258 9.3.2.4 Tuning PC Response Using Piezoelectric Effects 259 9.3.2.5 Tuning PC Response Using MEMS Actuation 260 9.4 Selected Applications of PC 260 9.4.1 Waveguide Devices 261 9.4.2 Dispersive Devices 262 9.4.3 Add/Drop Multiplexing Devices 262 9.4.4 Applications of PCs for Light-Emitting Diodes (LEDs) and Lasers 263 9.5 Conclusions 265 Acknowledgments 265 References 265 10 Nonlinear Optical Properties of Photonic Glasses 269 Keiji Tanaka 10.1 Introduction 269 10.2 Photonic Glass 271 10.3 Nonlinear Absorption and Refractivity 272 10.3.1 Fundamentals 272 10.3.2 Two-Photon Absorption 275 10.3.3 Nonlinear Refractivity 278 10.4 Nonlinear Excitation-Induced Structural Changes 280 10.4.1 Fundamentals 280 10.4.2 Oxides 281 10.4.3 Chalcogenides 283 10.5 Conclusions 285 10.A Addendum: Perspectives on Optical Devices 286 References 288 11 Optical Properties of Organic Semiconductors 295 Takashi Kobayashi and Hiroyoshi Naito 11.1 Introduction 295 11.2 Molecular Structure of -Conjugated Polymers 296 11.3 Theoretical Models 298 11.4 Absorption Spectrum 300 11.5 Photoluminescence 304 11.6 Non-Emissive Excited States 306 11.7 Electron-Electron Interaction 309 11.8 Interchain Interaction 314 11.9 Conclusions 320 References 321 12 Organic Semiconductors and Applications 323 Furong Zhu 12.1 Introduction 323 12.1.1 Device Architecture and Operation Principle 324 12.1.2 Technical Challenges and Process Integration 325 12.2 Anode Modification for Enhanced OLED Performance 327 12.2.1 Low-Temperature High-Performance ITO 327 12.2.1.1 Experimental Methods 328 12.2.1.2 Morphological Properties 329 12.2.1.3 Electrical Properties 331 12.2.1.4 Optical Properties 333 12.2.1.5 Compositional Analysis 336 12.2.2 Anode Modification 339 12.2.3 Electroluminescence Performance of OLEDs 340 12.3 Flexible OLEDs 345 12.3.1 Flexible OLEDs on Ultrathin Glass Substrate 346 12.3.2 Flexible Top-Emitting OLEDs on Plastic Foils 347 12.3.2.1 Top-Emitting OLEDs 348 12.3.2.2 Flexible TOLEDs on Plastic Foils 350 12.4 Solution-Processable High-Performing OLEDs 353 12.4.1 Performance of OLEDs with a Hybrid MoO3-PEDOT:PSS Hole Injection Layer (HIL) 353 12.4.2 Morphological Properties of the MoO3-PEDOT:PSS HIL 361 12.4.3 Surface Electronic Properties of MoO3-PEDOT:PSS HIL 363 12.5 Conclusions 368 References 369 13 Transparent White OLEDs 373 Choi Wing Hong and Furong Zhu 13.1 Introduction-Progress in Transparent WOLEDs 373 13.2 Performance of WOLEDs 374 13.2.1 Optimization of Dichromatic WOLEDs 374 13.2.2 J-L-V Characteristics of WOLEDs 377 13.2.3 Electron-Hole Current Balance in Transparent WOLEDs 384 13.3 Emission Behavior of Transparent WOLEDs 386 13.3.1 Visible-Light Transparency of WOLEDs 386 13.3.2 L-J Characteristics of Transparent WOLEDs 390 13.3.3 Angular-Dependent Color Stability of Transparent WOLEDs 395 13.4 Conclusions 400 References 400 14 Optical Properties of Thin Films 403 V.-V. Truong, S. Tanemura, A. Hache, and L. Miao 14.1 Introduction 403 14.2 Optics of Thin Films 404 14.2.1 An Isotropic Film on a Substrate 404 14.2.2 Matrix Methods for Multi-Layered Structures 406 14.2.3 Anisotropic Films 407 14.3 Reflection-Transmission Photoellipsometry for Determination of Optical Constants 408 14.3.1 Photoellipsometry of a Thick or a Thin Film 408 14.3.2 Photoellipsometry for a Stack of Thick and Thin Films 410 14.3.3 Remarks on the Reflection-Transmission Photoellipsometry Method 412 14.4 Application of Thin Films to Energy Management and Renewable-Energy Technologies 412 14.4.1 Electrochromic Thin Films 413 14.4.2 Pure and Metal-Doped VO2 Thermochromic Thin Films 414 14.4.3 Temperature-Stabilized V1-xWxO2 Sky Radiator Films 417 14.4.4 Optical Functional TiO2 Thin Film for Environmentally Friendly Technologies 420 14.5 Application of Tunable Thin Films to Phase and Polarization Modulation 424 14.6 Conclusions 430 References 430 15 Optical Characterization of Materials by Spectroscopic Ellipsometry 435 J. Mistrik 15.1 Introduction 435 15.2 Notions of Light Polarization 436 15.3 Measureable Quantities 438 15.4 Instrumentation 441 15.5 Single Interface 442 15.6 Single Layer 448 15.7 Multilayer 454 15.8 Linear Grating 458 15.9 Conclusions 462 Acknowledgments 463 References 463 16 Excitonic Processes in Quantum Wells 465 Jai Singh and I.-K. Oh 16.1 Introduction 465 16.2 Exciton-Phonon Interaction 466 16.3 Exciton Formation in QWs Assisted by Phonons 467 16.4 Nonradiative Relaxation of Free Excitons 474 16.4.1 Intraband Processes 475 16.4.2 Interband Processes 479 16.5 Quasi-2D Free-Exciton Linewidth 485 16.6 Localization of Free Excitons 491 16.7 Conclusions 499 References 500 17 Optoelectronic Properties and Applications of Quantum Dots 503 Jorn M. Hvam 17.1 Introduction 503 17.2 Epitaxial Growth and Structure of Quantum Dots 504 17.2.1 Self-Assembled Quantum Dots 504 17.2.2 Site-Controlled Growth on Patterned Substrates 505 17.2.3 Natural or Interface Quantum Dots 506 17.2.4 Quantum Dots in Nanowires 507 17.3 Excitons in Quantum Dots 508 17.3.1 Quantum-Dot Bandgap 509 17.3.2 Optical Transitions 510 17.4 Optical Properties 513 17.4.1 Radiative Lifetime, Oscillator Strength, and Internal Quantum Efficiency 514 17.4.2 Linewidth, Coherence, and Dephasing 516 17.4.3 Transient Four-Wave Mixing 517 17.5 Quantum Dot Applications 520 17.5.1 Quantum Dot Lasers and Optical Amplifiers 520 17.5.1.1 Gain Dynamics 522 17.5.1.2 Homogeneous Broadening and Dephasing 524 17.5.1.3 Long-Wavelength Lasers 526 17.5.1.4 Nano Lasers 527 17.5.2 Single-Photon Emitters 527 17.5.2.1 Micropillars and Nanowires 530 17.5.2.2 Photonic Crystal Waveguide 531 17.6 Conclusions 533 Acknowledgments 534 References 534 18 Perovskites - Revisiting the Venerable ABX3 Family with Organic Flexibility and New Applications 537 Junwei Xu, D.L. Carroll, K. Biswas, F. Moretti, S. Gridin, and R.T.Williams 18.1 Introduction 537 18.1.1 Review 537 18.1.2 The Structures 538 18.1.2.1 Simple Cubic Frameworks 538 18.1.2.2 The Multiplicity of Hybrids 539 18.1.2.3 Structural Variation 540 18.2 Hybrid Perovskites in Photovoltaics 544 18.2.1 Review 544 18.2.2 The Phenomena Characterized as \"Defect Tolerance\" 548 18.3 Light-Emitting Diodes Using Solution-Processed Lead Halide Perovskites 549 18.3.1 Review 549 18.3.2 Construction and Characterization of LEDs Utilizing CsPbBr3 Nano-Inclusions in Cs4PbBr6 as the Electroluminescent Medium 553 18.4 Ionizing Radiation Detectors Using Lead Halide Perovskite Materials: Basics, Progress, and Prospects 562 18.5 Conclusions 582 Acknowledgments 583 References 583 19 Optical Properties and Spin Dynamics of Diluted Magnetic Semiconductor Nanostructures 589 Akihiro Murayama and Yasuo Oka 19.1 Introduction 589 19.2 Quantum Wells 591 19.2.1 Spin Injection 591 19.2.2 Study of Spin Dynamics by Pump-Probe Spectroscopy 594 19.3 Fabrication of Nanostructures by Electron-Beam Lithography 596 19.4 Self-Assembled Quantum Dots 599 19.5 Hybrid Nanostructures with Ferromagnetic Materials 604 19.6 Conclusions 607 Acknowledgments 608 References 609 20 Kinetics of the Persistent Photoconductivity in Crystalline III-V Semiconductors 611 Ruben Jeronimo Freitas and Koichi Shimakawa 20.1 Introduction 611 20.2 A Review of PPC in III-V Semiconductors 613 20.3 Key Physical Terms Related to PPC 615 20.3.1 Dispersive Reaction 615 20.3.2 SEF and Power Law 616 20.3.3 Waiting Time Distribution 617 20.4 Kinetics of PPC in III-V Semiconductors 617 20.5 Conclusions 623 Acknowledgments 623 20.A On the Reaction Rate Under the Uniform Distribution 623 References 625 Index 627
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐