Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition(Statistics for Social and Behavioral Sciences)

概率论

原   价:
938.75
售   价:
751.00
优惠
平台大促 低至8折优惠
发货周期:预计8-10周发货
作      者
出  版 社
出版时间
2013年05月28日
装      帧
平装
ISBN
9781461428596
复制
页      码
236
开      本
9.21 x 6.14 x 0.52
语      种
英文
综合评分
暂无评分
我 要 买
- +
库存 30 本
  • 图书详情
  • 目次
  • 买家须知
  • 书评(0)
  • 权威书评(0)
图书简介
Aside from distribution theory, projections and the singular value decomposition (SVD) are the two most important concepts for understanding the basic mechanism of multivariate analysis. The former underlies the least squares estimation in regression analysis, which is essentially a projection of one subspace onto another, and the latter underlies principal component analysis, which seeks to find a subspace that captures the largest variability in the original space.This book is about projections and SVD. A thorough discussion of generalized inverse (g-inverse) matrices is also given because it is closely related to the former. The book provides systematic and in-depth accounts of these concepts from a unified viewpoint of linear transformations finite dimensional vector spaces. More specially, it shows that projection matrices (projectors) and g-inverse matrices can be defined in various ways so that a vector space is decomposed into a direct-sum of (disjoint) subspaces. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition will be useful for researchers, practitioners, and students in applied mathematics, statistics, engineering, behaviormetrics, and other fields.
本书暂无推荐
本书暂无推荐
看了又看
  • 上一个
  • 下一个